Measurement of metal–roll interface during metal rolling using normal and oblique ultrasonic reflection

IF 1.6 Q4 MATERIALS SCIENCE, COATINGS & FILMS
G. Adeyemi, R. Dwyer-Joyce, J. T. Stephen, A. Adebayo
{"title":"Measurement of metal–roll interface during metal rolling using normal and oblique ultrasonic reflection","authors":"G. Adeyemi, R. Dwyer-Joyce, J. T. Stephen, A. Adebayo","doi":"10.1080/17515831.2019.1675338","DOIUrl":null,"url":null,"abstract":"ABSTRACT It is important to monitor the roll bite interface during metal rolling to maintain the product size and homogeneity so as to minimize the material wastage. However, the harsh nature of cold rolling makes installation of sensors in metal roll for industrial applications difficult. The present study used a novel ultrasonic measurement technique whereby an ultrasonic signal went through an external sensor layout arrangement to study the metal-roll interface. The reflection coefficient obtained from the roll-strip interface at 0° to the roll surface (normal ultrasonic measurement technique) and 19° (oblique ultrasonic measurement technique) were modelled and experimentally investigated on an instrumented pilot metal rolling mill. Variances of 6.4% and 8.8% were obtained in the reflection coefficient of the techniques from experimental and modelling approaches, respectively. This showed that both techniques could be used to study the effect of the angle of incidence wave on the reflection coefficient.","PeriodicalId":23331,"journal":{"name":"Tribology - Materials, Surfaces & Interfaces","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17515831.2019.1675338","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology - Materials, Surfaces & Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17515831.2019.1675338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT It is important to monitor the roll bite interface during metal rolling to maintain the product size and homogeneity so as to minimize the material wastage. However, the harsh nature of cold rolling makes installation of sensors in metal roll for industrial applications difficult. The present study used a novel ultrasonic measurement technique whereby an ultrasonic signal went through an external sensor layout arrangement to study the metal-roll interface. The reflection coefficient obtained from the roll-strip interface at 0° to the roll surface (normal ultrasonic measurement technique) and 19° (oblique ultrasonic measurement technique) were modelled and experimentally investigated on an instrumented pilot metal rolling mill. Variances of 6.4% and 8.8% were obtained in the reflection coefficient of the techniques from experimental and modelling approaches, respectively. This showed that both techniques could be used to study the effect of the angle of incidence wave on the reflection coefficient.
用正向和斜向超声反射测量金属轧制过程中金属-辊界面
在金属轧制过程中,监测轧辊咬口界面对保持产品尺寸和均匀性,减少材料浪费是非常重要的。然而,冷轧的恶劣性质使得传感器在工业应用的金属轧辊的安装困难。本研究采用了一种新颖的超声测量技术,即超声波信号通过外部传感器布局来研究金属-辊界面。在仪器化的中试金属轧机上,对0°(正常超声测量技术)和19°(斜向超声测量技术)处的辊带界面与轧辊表面的反射系数进行了建模和实验研究。实验方法和模型方法的反射系数方差分别为6.4%和8.8%。这表明两种方法都可以用来研究入射波角度对反射系数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology - Materials, Surfaces & Interfaces
Tribology - Materials, Surfaces & Interfaces MATERIALS SCIENCE, COATINGS & FILMS-
CiteScore
2.80
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信