On the existence and the Hölder regularity of the local time of the Brownian bridge

IF 0.3 Q4 STATISTICS & PROBABILITY
O. Allaoui, A. Sghir, S. Hadiri
{"title":"On the existence and the Hölder regularity of the local time of the Brownian bridge","authors":"O. Allaoui, A. Sghir, S. Hadiri","doi":"10.1515/rose-2022-2087","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we will establish the existence and the Hölder regularity of the local time of the Brownian bridge. Our results are obtained by using a result on Malliavin calculus in [K. Es-Sebaiy, D. Nualart, Y. Ouknine and C. A. Tudor, Occupation densities for certain processes related to fractional Brownian motion, Stochastics 82 2010, 1–3, 133–147] for a Gaussian process with an absolutely continuous random drift, jointly with the classical approach based on the concept of local nondeterminism for Gaussian processes introduced by Berman [S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 1973/74, 69–94].","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"30 1","pages":"259 - 270"},"PeriodicalIF":0.3000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we will establish the existence and the Hölder regularity of the local time of the Brownian bridge. Our results are obtained by using a result on Malliavin calculus in [K. Es-Sebaiy, D. Nualart, Y. Ouknine and C. A. Tudor, Occupation densities for certain processes related to fractional Brownian motion, Stochastics 82 2010, 1–3, 133–147] for a Gaussian process with an absolutely continuous random drift, jointly with the classical approach based on the concept of local nondeterminism for Gaussian processes introduced by Berman [S. M. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 1973/74, 69–94].
关于Brownian桥局部时间的存在性和Hölder正则性
摘要在本文中,我们将建立布朗桥的局部时间的存在性和Hölder正则性。我们的结果是通过使用[K.Es-Sebaiy,D.Nualart,Y.Ouknine和C.a.Tudor,与分数布朗运动相关的某些过程的占用密度,Stocurtics 82 2010,1-3133–147]中关于具有绝对连续随机漂移的高斯过程的Malliavin演算的结果获得的,结合Berman提出的基于高斯过程局部不确定性概念的经典方法[S.M.Berman,高斯过程的局部不确定性和局部时间,印第安纳大学数学杂志,1973/74,69–94]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信