{"title":"Quasilinear class of noncoercive parabolic problems with Hardy potential and L1-data","authors":"Taghi Ahmedatt, Youssef Hajji, H. Hjiaj","doi":"10.1515/msds-2022-0168","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study the following noncoercive quasilinear parabolic problem ∂ u ∂ t − div a ( x , t , u , ∇ u ) + ν ∣ u ∣ s − 1 u = λ ∣ u ∣ p − 2 u ∣ x ∣ p + f in Q T , u = 0 on Σ T , u ( x , 0 ) = u 0 in Ω , \\left\\{\\begin{array}{ll}\\frac{\\partial u}{\\partial t}-\\hspace{0.1em}\\text{div}\\hspace{0.1em}a\\left(x,t,u,\\nabla u)+\\nu {| u| }^{s-1}u=\\lambda \\frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{Q}_{T},\\\\ u=0& \\hspace{0.1em}\\text{on}\\hspace{0.1em}\\hspace{0.33em}{\\Sigma }_{T},\\\\ u\\left(x,0)={u}_{0}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\end{array}\\right. with f ∈ L 1 ( Q T ) f\\in {L}^{1}\\left({Q}_{T}) and u 0 ∈ L 1 ( Ω ) {u}_{0}\\in {L}^{1}\\left(\\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.","PeriodicalId":30985,"journal":{"name":"Nonautonomous Dynamical Systems","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonautonomous Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/msds-2022-0168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this article, we study the following noncoercive quasilinear parabolic problem ∂ u ∂ t − div a ( x , t , u , ∇ u ) + ν ∣ u ∣ s − 1 u = λ ∣ u ∣ p − 2 u ∣ x ∣ p + f in Q T , u = 0 on Σ T , u ( x , 0 ) = u 0 in Ω , \left\{\begin{array}{ll}\frac{\partial u}{\partial t}-\hspace{0.1em}\text{div}\hspace{0.1em}a\left(x,t,u,\nabla u)+\nu {| u| }^{s-1}u=\lambda \frac{{| u| }^{p-2}u}{{| x| }^{p}}+f& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{Q}_{T},\\ u=0& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}{\Sigma }_{T},\\ u\left(x,0)={u}_{0}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\end{array}\right. with f ∈ L 1 ( Q T ) f\in {L}^{1}\left({Q}_{T}) and u 0 ∈ L 1 ( Ω ) {u}_{0}\in {L}^{1}\left(\Omega ) and show the existence of entropy solutions for this noncoercive parabolic problem with Hardy potential and L1-data.