On positive scalar curvature bordism

IF 0.7 4区 数学 Q2 MATHEMATICS
P. Piazza, T. Schick, V. Roma, Mathematisches Institut, Universitat Gottingen
{"title":"On positive scalar curvature bordism","authors":"P. Piazza, T. Schick, V. Roma, Mathematisches Institut, Universitat Gottingen","doi":"10.4310/cag.2022.v30.n9.a4","DOIUrl":null,"url":null,"abstract":"Using standard results from higher (secondary) index theory, we prove that the positive scalar curvature bordism groups of a cartesian product GxZ are infinite in dimension 4n if n>0 G a group with non-trivial torsion. We construct representatives of each of these classes which are connected and with fundamental group GxZ. We get the same result in dimension 4n+2 (n>0) if G is finite and contains an element which is not conjugate to its inverse. This generalizes the main result of Kazaras, Ruberman, Saveliev, \"On positive scalar curvature cobordism and the conformal Laplacian on end-periodic manifolds\" to arbitrary even dimensions and arbitrary groups with torsion.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2022.v30.n9.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Using standard results from higher (secondary) index theory, we prove that the positive scalar curvature bordism groups of a cartesian product GxZ are infinite in dimension 4n if n>0 G a group with non-trivial torsion. We construct representatives of each of these classes which are connected and with fundamental group GxZ. We get the same result in dimension 4n+2 (n>0) if G is finite and contains an element which is not conjugate to its inverse. This generalizes the main result of Kazaras, Ruberman, Saveliev, "On positive scalar curvature cobordism and the conformal Laplacian on end-periodic manifolds" to arbitrary even dimensions and arbitrary groups with torsion.
关于正标量曲率本体
利用高(次)指标理论的标准结果,证明了如果n>0 G是具有非平凡扭转的群,则笛卡尔积GxZ的正标量曲率波群在4n维上是无限的。我们构造了每一个与基本群GxZ相连的类的代表。在维数4n+2 (n>)中我们得到同样的结果如果G是有限的并且包含一个不与它的逆共轭的元素。将Kazaras, Ruberman, Saveliev,“关于正标量曲率配合和末周期流形上的共形拉普拉斯”的主要结果推广到任意偶维和任意具有扭转的群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信