Topic Ontologies for Arguments

Yamen Ajjour, Johannes Kiesel, Benno Stein, Martin Potthast
{"title":"Topic Ontologies for Arguments","authors":"Yamen Ajjour, Johannes Kiesel, Benno Stein, Martin Potthast","doi":"10.48550/arXiv.2301.09759","DOIUrl":null,"url":null,"abstract":"Many computational argumentation tasks, such as stance classification, are topic-dependent: The effectiveness of approaches to these tasks depends largely on whether they are trained with arguments on the same topics as those on which they are tested. The key question is: What are these training topics? To answer this question, we take the first step of mapping the argumentation landscape with The Argument Ontology (TAO). TAO draws on three authoritative sources for argument topics: the World Economic Forum, Wikipedia’s list of controversial topics, and Debatepedia. By comparing the topics in our ontology with those in 59 argument corpora, we perform the first comprehensive assessment of their topic coverage. While TAO already covers most of the corpus topics, the corpus topics barely cover all the topics in TAO. This points to a new goal for corpus construction to achieve a broad topic coverage and thus better generalizability of computational argumentation approaches.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"1381-1397"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.09759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many computational argumentation tasks, such as stance classification, are topic-dependent: The effectiveness of approaches to these tasks depends largely on whether they are trained with arguments on the same topics as those on which they are tested. The key question is: What are these training topics? To answer this question, we take the first step of mapping the argumentation landscape with The Argument Ontology (TAO). TAO draws on three authoritative sources for argument topics: the World Economic Forum, Wikipedia’s list of controversial topics, and Debatepedia. By comparing the topics in our ontology with those in 59 argument corpora, we perform the first comprehensive assessment of their topic coverage. While TAO already covers most of the corpus topics, the corpus topics barely cover all the topics in TAO. This points to a new goal for corpus construction to achieve a broad topic coverage and thus better generalizability of computational argumentation approaches.
参数的主题本体
许多计算论证任务,如立场分类,都依赖于主题:这些任务的方法的有效性在很大程度上取决于它们是否使用与测试主题相同的论点进行训练。关键问题是:这些培训主题是什么?为了回答这个问题,我们首先用论证本体论(TAO)映射论证景观。TAO引用了三个权威的争论话题来源:世界经济论坛、维基百科的争议话题列表和Debatepedia。通过将我们的本体中的主题与59个论点语料库中的主题进行比较,我们对它们的主题覆盖范围进行了首次综合评估。虽然TAO已经涵盖了大部分语料库主题,但语料库主题几乎没有涵盖TAO中的所有主题。这为语料库建设提出了一个新的目标,即实现广泛的主题覆盖,从而更好地推广计算论证方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信