{"title":"Exploring the Potential of Combustion on Titan","authors":"C. Depcik","doi":"10.4271/01-11-01-0002","DOIUrl":null,"url":null,"abstract":"Significant attention has been focused on Mars due to its relative proximity and possibility of sustaining human life. However, its lack of in-situ sources of energy presents a challenge to generate needed energy on the surface. Comparatively, Titan has a nearly endless source of fuel in its atmosphere and lakes, but both are lacking in regards to their oxidizing capacity. The finding of a possible underground liquid ammonia-water lake on Titan suggests that oxygen might actually be within reach. This effort provides the first theoretical study involving a primary energy generation system on Titan using the atmosphere as a fuel and underground water as the source for the oxygen via electrolysis from wind generated electricity. Thermodynamic calculations and use of chemical kinetics in a zero-dimensional Homogeneous Charge Compression Ignition (HCCI) engine model demonstrate that is indeed possible to operate an internal combustion engine on the surface of Titan while providing heat for terraforming and human activities. Subsequent terraforming estimates illustrate that while the potential for energy and heat exists, the amount of needed hardware is largely impractical. However, the findings may stimulate further curiosity by others to look towards outer space and imagine what might be possible. Downloaded from SAE International by Christopher Depcik, Tuesday, April 17, 2018","PeriodicalId":44558,"journal":{"name":"SAE International Journal of Aerospace","volume":"11 1","pages":"27-46"},"PeriodicalIF":0.3000,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4271/01-11-01-0002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/01-11-01-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 3
Abstract
Significant attention has been focused on Mars due to its relative proximity and possibility of sustaining human life. However, its lack of in-situ sources of energy presents a challenge to generate needed energy on the surface. Comparatively, Titan has a nearly endless source of fuel in its atmosphere and lakes, but both are lacking in regards to their oxidizing capacity. The finding of a possible underground liquid ammonia-water lake on Titan suggests that oxygen might actually be within reach. This effort provides the first theoretical study involving a primary energy generation system on Titan using the atmosphere as a fuel and underground water as the source for the oxygen via electrolysis from wind generated electricity. Thermodynamic calculations and use of chemical kinetics in a zero-dimensional Homogeneous Charge Compression Ignition (HCCI) engine model demonstrate that is indeed possible to operate an internal combustion engine on the surface of Titan while providing heat for terraforming and human activities. Subsequent terraforming estimates illustrate that while the potential for energy and heat exists, the amount of needed hardware is largely impractical. However, the findings may stimulate further curiosity by others to look towards outer space and imagine what might be possible. Downloaded from SAE International by Christopher Depcik, Tuesday, April 17, 2018