Okba Boutebba, S. Semcheddine, F. Krim, B. Talbi, A. Reatti, F. Corti
{"title":"Robust Non-Linear Controller Design for DC-DC Buck Converter via Modified Back-Stepping Methodology","authors":"Okba Boutebba, S. Semcheddine, F. Krim, B. Talbi, A. Reatti, F. Corti","doi":"10.5755/j02.eie.31487","DOIUrl":null,"url":null,"abstract":"This paper introduces two improved control algorithms for DC-DC converters. The first one is called “Non-Adaptive Modified Back-Stepping Control” (M-BSC) and the second one is called “Adaptive Modified Back-Stepping Control” (AM-BSC). Both the proposed control schemes allow one to increase the robustness to load and input voltage variations and make the DC-DC converter less sensitive to disturbances concerning the control algorithms available in the literature. The control aims to keep the output voltage at the desired value despite any changes that may occur during its operation. As a case study, the proposed control techniques have been applied to a DC-DC Buck converter. To validate the theoretical results and evaluate the performance of the proposed control algorithms, numerical simulations with four different scenarios have been analyzed: nominal operating conditions, load variations, output voltage tracking, and input voltage variations. The simulation results highlight the good performance of the proposed control algorithms compared to other classical algorithms, improving both the stationary error and the response time.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces two improved control algorithms for DC-DC converters. The first one is called “Non-Adaptive Modified Back-Stepping Control” (M-BSC) and the second one is called “Adaptive Modified Back-Stepping Control” (AM-BSC). Both the proposed control schemes allow one to increase the robustness to load and input voltage variations and make the DC-DC converter less sensitive to disturbances concerning the control algorithms available in the literature. The control aims to keep the output voltage at the desired value despite any changes that may occur during its operation. As a case study, the proposed control techniques have been applied to a DC-DC Buck converter. To validate the theoretical results and evaluate the performance of the proposed control algorithms, numerical simulations with four different scenarios have been analyzed: nominal operating conditions, load variations, output voltage tracking, and input voltage variations. The simulation results highlight the good performance of the proposed control algorithms compared to other classical algorithms, improving both the stationary error and the response time.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.