Fundamental Factorization of a GLSM Part I: Construction

IF 2 4区 数学 Q1 MATHEMATICS
I. Ciocan-Fontanine, David Favero, J'er'emy Gu'er'e, Bumsig Kim, M. Shoemaker
{"title":"Fundamental Factorization of a GLSM Part I: Construction","authors":"I. Ciocan-Fontanine, David Favero, J'er'emy Gu'er'e, Bumsig Kim, M. Shoemaker","doi":"10.1090/memo/1435","DOIUrl":null,"url":null,"abstract":"We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov–Witten type invariants defined by Chang–Li and Fan–Jarvis–Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk–Vaintrob. The invariants are defined by constructing a “fundamental factorization” supported on the moduli space of Landau–Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier–Mukai transform; the associated map on Hochschild homology defines our theory.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1435","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 23

Abstract

We define enumerative invariants associated to a hybrid Gauged Linear Sigma Model. We prove that in the relevant special cases these invariants recover both the Gromov–Witten type invariants defined by Chang–Li and Fan–Jarvis–Ruan using cosection localization as well as the FJRW type invariants constructed by Polishchuk–Vaintrob. The invariants are defined by constructing a “fundamental factorization” supported on the moduli space of Landau–Ginzburg maps to a convex hybrid model. This gives the kernel of a Fourier–Mukai transform; the associated map on Hochschild homology defines our theory.
GLSM的基本因子分解第一部分:构造
我们定义了与混合测量线性西格玛模型相关的枚举不变量。我们证明了在相关的特殊情况下,这些不变量既恢复了由Chang-Li和Fan-Jarvis-Ruan定义的Gromov-Witten型不变量,也恢复了由Polishchuk-Vaintrob构造的FJRW型不变量。不变量是通过构造一个支持在Landau-Ginzburg映射的模空间上的“基本分解”来定义的。这给出了傅里叶- mukai变换的核;Hochschild同调的相关图定义了我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信