Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Samuel C. Edwards, H. Oh
{"title":"Spectral gap and exponential mixing on geometrically finite hyperbolic manifolds","authors":"Samuel C. Edwards, H. Oh","doi":"10.1215/00127094-2021-0051","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{M}=\\Gamma\\backslash\\mathbb{H}^{d+1}$ be a geometrically finite hyperbolic manifold with critical exponent exceeding $d/2$. We obtain a precise asymptotic expansion of the matrix coefficients for the geodesic flow in $L^2(\\mathrm{T}^1(\\mathcal{M}))$, with exponential error term essentially as good as the one given by the spectral gap for the Laplace operator on $L^2(\\mathcal{M})$ due to Lax and Phillips. Combined with the work of Bourgain, Gamburd, and Sarnak and its generalization by Golsefidy and Varju on expanders, this implies uniform exponential mixing for congruence covers of $\\mathcal{M}$ when $\\Gamma$ is a thin subgroup of $\\mathrm{SO}^{\\circ}(d+1,1)$. Our result implies that, with respect to the Bowen-Margulis-Sullivan measure, the geodesic flow on $\\mathrm{T}^1(\\mathcal{M})$ is exponentially mixing, uniformly over congruence covers in the case when $\\Gamma$ is a thin subgroup.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

Abstract

Let $\mathcal{M}=\Gamma\backslash\mathbb{H}^{d+1}$ be a geometrically finite hyperbolic manifold with critical exponent exceeding $d/2$. We obtain a precise asymptotic expansion of the matrix coefficients for the geodesic flow in $L^2(\mathrm{T}^1(\mathcal{M}))$, with exponential error term essentially as good as the one given by the spectral gap for the Laplace operator on $L^2(\mathcal{M})$ due to Lax and Phillips. Combined with the work of Bourgain, Gamburd, and Sarnak and its generalization by Golsefidy and Varju on expanders, this implies uniform exponential mixing for congruence covers of $\mathcal{M}$ when $\Gamma$ is a thin subgroup of $\mathrm{SO}^{\circ}(d+1,1)$. Our result implies that, with respect to the Bowen-Margulis-Sullivan measure, the geodesic flow on $\mathrm{T}^1(\mathcal{M})$ is exponentially mixing, uniformly over congruence covers in the case when $\Gamma$ is a thin subgroup.
几何有限双曲流形上的谱隙和指数混合
设$\mathcal{M}=\Gamma\反斜杠\mathbb{H}^{d+1}$是一个临界指数超过$d/2$的几何有限双曲流形。我们得到了L^2(\ mathm {T}^1(\mathcal{M}))$中测地线流的矩阵系数的精确渐近展开式,其指数误差项本质上与L^2(\mathcal{M})$上的拉普拉斯算子由于Lax和Phillips引起的谱间隙所给出的误差项一样好。结合Bourgain, Gamburd和Sarnak的工作以及Golsefidy和Varju在展开子上的推广,这意味着当$\Gamma$是$\ mathm {SO}^{\circ}(d+1,1)$的细子群时,$\mathcal{M}$的同余覆盖的均匀指数混合。我们的结果表明,对于Bowen-Margulis-Sullivan测度,当$\Gamma$是一个细子群时,$\ mathm {T}^1(\mathcal{M})$上的测地流是指数混合的,在同余覆盖上是均匀的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信