{"title":"Privacy-preserved learning from non-i.i.d data in fog-assisted IoT: A federated learning approach","authors":"Mohamed Abdel-Basset , Hossam Hawash , Nour Moustafa , Imran Razzak , Mohamed Abd Elfattah","doi":"10.1016/j.dcan.2022.12.013","DOIUrl":null,"url":null,"abstract":"<div><p>With the prevalence of the Internet of Things (IoT) systems, smart cities comprise complex networks, including sensors, actuators, appliances, and cyber services. The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks, especially privacy-related attacks such as inference and data poisoning ones. Federated Learning (FL) has been regarded as a hopeful method to enable distributed learning with privacy-preserved intelligence in IoT applications. Even though the significance of developing privacy-preserving FL has drawn as a great research interest, the current research only concentrates on FL with independent identically distributed (i.i.d) data and few studies have addressed the non-i. i.d setting. FL is known to be vulnerable to Generative Adversarial Network (GAN) attacks, where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors. This paper proposes an innovative Privacy Protection-based Federated Deep Learning (PP-FDL) framework, which accomplishes data protection against privacy-related GAN attacks, along with high classification rates from non-i. i.d data. PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other, where class probabilities are protected utilizing a private identifier generated for each class. The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets. The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8% as accuracy improvements.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002814/pdfft?md5=2b6b513219111df88a7c003a3a927840&pid=1-s2.0-S2352864822002814-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002814","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the prevalence of the Internet of Things (IoT) systems, smart cities comprise complex networks, including sensors, actuators, appliances, and cyber services. The complexity and heterogeneity of smart cities have become vulnerable to sophisticated cyber-attacks, especially privacy-related attacks such as inference and data poisoning ones. Federated Learning (FL) has been regarded as a hopeful method to enable distributed learning with privacy-preserved intelligence in IoT applications. Even though the significance of developing privacy-preserving FL has drawn as a great research interest, the current research only concentrates on FL with independent identically distributed (i.i.d) data and few studies have addressed the non-i. i.d setting. FL is known to be vulnerable to Generative Adversarial Network (GAN) attacks, where an adversary can presume to act as a contributor participating in the training process to acquire the private data of other contributors. This paper proposes an innovative Privacy Protection-based Federated Deep Learning (PP-FDL) framework, which accomplishes data protection against privacy-related GAN attacks, along with high classification rates from non-i. i.d data. PP-FDL is designed to enable fog nodes to cooperate to train the FDL model in a way that ensures contributors have no access to the data of each other, where class probabilities are protected utilizing a private identifier generated for each class. The PP-FDL framework is evaluated for image classification using simple convolutional networks which are trained using MNIST and CIFAR-10 datasets. The empirical results have revealed that PF-DFL can achieve data protection and the framework outperforms the other three state-of-the-art models with 3%–8% as accuracy improvements.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.