Discussion of “Co-citation and Co-authorship Networks of Statisticians” by Pengsheng Ji, Jiashun Jin, Zheng Tracy Ke, and Wanshan Li

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peter Macdonald, E. Levina, Ji Zhu
{"title":"Discussion of “Co-citation and Co-authorship Networks of Statisticians” by Pengsheng Ji, Jiashun Jin, Zheng Tracy Ke, and Wanshan Li","authors":"Peter Macdonald, E. Levina, Ji Zhu","doi":"10.1080/07350015.2022.2041423","DOIUrl":null,"url":null,"abstract":"We congratulate the authors on an interesting paper and on making an important contribution to the network analysis community through compiling a large new dataset which will spur further work on multilayer, dynamic and other complex network settings. This discussion focuses on the paper’s particular methods and applications in dynamic network analysis. Complexity of dynamic network data leads to many necessary analyst choices in both data processing and network modeling. Where possible, we will compare the choices made in this paper with other possibilities from recent literature on dynamic network analysis. One of the important points of the paper is that much of our network data has always been dynamic. For instance, communication networks consisting of sent and received E-mails come with time stamps, whether we choose to incorporate them or not. Developing statistical methods that take advantage of this time varying structure will lead to greater efficiency, novel insights, and generally allow us to take full advantage of rich modern datasets like the one featured in this paper.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2041423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We congratulate the authors on an interesting paper and on making an important contribution to the network analysis community through compiling a large new dataset which will spur further work on multilayer, dynamic and other complex network settings. This discussion focuses on the paper’s particular methods and applications in dynamic network analysis. Complexity of dynamic network data leads to many necessary analyst choices in both data processing and network modeling. Where possible, we will compare the choices made in this paper with other possibilities from recent literature on dynamic network analysis. One of the important points of the paper is that much of our network data has always been dynamic. For instance, communication networks consisting of sent and received E-mails come with time stamps, whether we choose to incorporate them or not. Developing statistical methods that take advantage of this time varying structure will lead to greater efficiency, novel insights, and generally allow us to take full advantage of rich modern datasets like the one featured in this paper.
纪鹏生、金家顺、柯郑翠、李万山对“统计学家共引合著网络”的探讨
我们祝贺作者发表了一篇有趣的论文,并对网络分析社区做出了重要贡献,他们编纂了一个大型的新数据集,这将促进对多层、动态和其他复杂网络设置的进一步研究。本文着重讨论了本文在动态网络分析中的具体方法和应用。动态网络数据的复杂性导致分析人员在数据处理和网络建模方面有许多必要的选择。在可能的情况下,我们将把本文所做的选择与近期动态网络分析文献中的其他可能性进行比较。本文的重点之一是我们的网络数据一直是动态的。例如,由发送和接收电子邮件组成的通信网络带有时间戳,无论我们是否选择合并它们。开发利用这种时变结构的统计方法将带来更高的效率,新的见解,并且通常允许我们充分利用丰富的现代数据集,如本文所述的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信