Spatial Correlation Robust Inference in Linear Regression and Panel Models

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ulrich K. Müller, M. Watson
{"title":"Spatial Correlation Robust Inference in Linear Regression and Panel Models","authors":"Ulrich K. Müller, M. Watson","doi":"10.1080/07350015.2022.2127737","DOIUrl":null,"url":null,"abstract":"Abstract We consider inference about a scalar coefficient in a linear regression with spatially correlated errors. Recent suggestions for more robust inference require stationarity of both regressors and dependent variables for their large sample validity. This rules out many empirically relevant applications, such as difference-in-difference designs. We develop a robustified version of the recently suggested SCPC method that addresses this challenge. We find that the method has good size properties in a wide range of Monte Carlo designs that are calibrated to real world applications, both in a pure cross sectional setting, but also for spatially correlated panel data. We provide numerically efficient methods for computing the associated spatial-correlation robust test statistics, critical values, and confidence intervals.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2127737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We consider inference about a scalar coefficient in a linear regression with spatially correlated errors. Recent suggestions for more robust inference require stationarity of both regressors and dependent variables for their large sample validity. This rules out many empirically relevant applications, such as difference-in-difference designs. We develop a robustified version of the recently suggested SCPC method that addresses this challenge. We find that the method has good size properties in a wide range of Monte Carlo designs that are calibrated to real world applications, both in a pure cross sectional setting, but also for spatially correlated panel data. We provide numerically efficient methods for computing the associated spatial-correlation robust test statistics, critical values, and confidence intervals.
线性回归和面板模型的空间相关鲁棒推断
摘要我们考虑了具有空间相关误差的线性回归中关于标量系数的推断。最近关于更稳健推理的建议要求回归变量和因变量的平稳性,以获得其大样本有效性。这排除了许多与经验相关的应用,例如差异设计中的差异。我们开发了最近提出的SCPC方法的稳健版本,以应对这一挑战。我们发现,该方法在广泛的蒙特卡洛设计中具有良好的尺寸特性,这些设计针对真实世界的应用进行了校准,无论是在纯横截面设置中,还是在空间相关的面板数据中。我们提供了数值有效的方法来计算相关的空间相关性稳健测试统计、临界值和置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信