Robust numerical method for a singularly perturbed problem arising in the modelling of enzyme kinetics

Q2 Agricultural and Biological Sciences
John J. H. Miller, E. O'Riordan
{"title":"Robust numerical method for a singularly perturbed problem arising in the modelling of enzyme kinetics","authors":"John J. H. Miller, E. O'Riordan","doi":"10.11145/J.BIOMATH.2020.08.227","DOIUrl":null,"url":null,"abstract":"A system of two coupled nonlinear initial value equations, arising in the mathematical modelling of enzyme kinetics, is examined. The system is singularly perturbed and one of the components will contain steep gradients. A priori parameter explicit bounds on the two components are established. A numerical method incorporating a specially constructed piecewise-uniform mesh is used to generate numerical approximations, which are shown to converge pointwise to the continuous solution irrespective of the size of the singular perturbation parameter. Numerical results are presented to illustrate the computational performance of the numerical method. The numerical method is also remarkably simple to implement. ","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2020.08.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

Abstract

A system of two coupled nonlinear initial value equations, arising in the mathematical modelling of enzyme kinetics, is examined. The system is singularly perturbed and one of the components will contain steep gradients. A priori parameter explicit bounds on the two components are established. A numerical method incorporating a specially constructed piecewise-uniform mesh is used to generate numerical approximations, which are shown to converge pointwise to the continuous solution irrespective of the size of the singular perturbation parameter. Numerical results are presented to illustrate the computational performance of the numerical method. The numerical method is also remarkably simple to implement. 
酶动力学模型中奇异摄动问题的鲁棒数值方法
研究了酶动力学数学模型中出现的两个耦合非线性初值方程组。系统是奇异摄动的,其中一个组件将包含陡峭的梯度。建立了两个分量的先验参数显式边界。采用一种结合特殊构造的分段均匀网格的数值方法来生成数值逼近,结果表明,与奇异扰动参数的大小无关,该数值逼近点向连续解收敛。数值结果说明了数值方法的计算性能。数值方法的实现也非常简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomath
Biomath Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
6
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信