A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings

Q3 Mathematics
K. Kim, Amil Petrin
{"title":"A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings","authors":"K. Kim, Amil Petrin","doi":"10.1515/jem-2021-0038","DOIUrl":null,"url":null,"abstract":"Abstract When the endogenous variables enter non-parametrically into the regression equation standard linear instrumental variables approaches fail. Two existing solutions are the non-parametric instrumental variables (NPIVs) estimators, which are based on a set of conditional moment restrictions (CMRs), and the control function (CF) estimators, which use conditional mean independence (CMI) restrictions. Our first contribution is to show that – similar to CMI – the CMR place shape restrictions on the conditional expectation of the error given the instruments and endogenous variables that are sufficient for identification, and we call our new estimator based on these restrictions the CMR-CF estimator. Our second contribution is to develop an estimator for non-linear and non-parametric settings that can combine both CMR and CMI restrictions, which cannot be done in either the NPIV nor the non-parametric CF setting. This new “Generalized CMR-CF” uses both CMR and CMI restrictions together by allowing the conditional expectation of the structural error to depend on both instruments and control variables. When sieves are used to approximate both the structural function and the CF our estimator reduces to a series of least squares regressions. Our Monte Carlos illustrate that our new estimator performs well across several economic settings.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"11 1","pages":"91 - 125"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2021-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract When the endogenous variables enter non-parametrically into the regression equation standard linear instrumental variables approaches fail. Two existing solutions are the non-parametric instrumental variables (NPIVs) estimators, which are based on a set of conditional moment restrictions (CMRs), and the control function (CF) estimators, which use conditional mean independence (CMI) restrictions. Our first contribution is to show that – similar to CMI – the CMR place shape restrictions on the conditional expectation of the error given the instruments and endogenous variables that are sufficient for identification, and we call our new estimator based on these restrictions the CMR-CF estimator. Our second contribution is to develop an estimator for non-linear and non-parametric settings that can combine both CMR and CMI restrictions, which cannot be done in either the NPIV nor the non-parametric CF setting. This new “Generalized CMR-CF” uses both CMR and CMI restrictions together by allowing the conditional expectation of the structural error to depend on both instruments and control variables. When sieves are used to approximate both the structural function and the CF our estimator reduces to a series of least squares regressions. Our Monte Carlos illustrate that our new estimator performs well across several economic settings.
非线性环境下的广义非参数仪表变量控制函数估计方法
摘要当内生变量以非参数方式进入回归方程时,标准的线性工具变量方法失效。现有的两种解决方案是基于一组条件矩限制(CMR)的非参数工具变量(NPIV)估计量和使用条件均值独立性(CMI)限制的控制函数(CF)估计量。我们的第一个贡献是证明,与CMI类似,CMR在给定足以识别的工具和内生变量的情况下,对误差的条件预期施加形状限制,我们将基于这些限制的新估计器称为CMR-CF估计器。我们的第二个贡献是开发了一种非线性和非参数设置的估计器,该估计器可以结合CMR和CMI限制,这在NPIV和非参数CF设置中都无法实现。这种新的“广义CMR-CF”同时使用CMR和CMI限制,允许结构误差的条件预期取决于仪器和控制变量。当使用筛子来近似结构函数和CF时,我们的估计器简化为一系列最小二乘回归。我们的Monte Carlos表明,我们的新估计器在几个经济环境中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信