{"title":"An algorithm taking Kirby diagrams to trisection diagrams","authors":"Willi Kepplinger","doi":"10.2140/pjm.2022.318.109","DOIUrl":null,"url":null,"abstract":"We present an algorithm taking a Kirby diagram of a closed oriented $4$-manifold to a trisection diagram of the same manifold. This algorithm provides us with a large number of examples for trisection diagrams of closed oriented $4$-manifolds since many Kirby-diagrammatic descriptions of closed oriented $4$-manifolds are known. That being said, the algorithm does not necessarily provide particularly efficient trisection diagrams. We also extend this algorithm to work for the non-orientable case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2022.318.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We present an algorithm taking a Kirby diagram of a closed oriented $4$-manifold to a trisection diagram of the same manifold. This algorithm provides us with a large number of examples for trisection diagrams of closed oriented $4$-manifolds since many Kirby-diagrammatic descriptions of closed oriented $4$-manifolds are known. That being said, the algorithm does not necessarily provide particularly efficient trisection diagrams. We also extend this algorithm to work for the non-orientable case.