Identify Key Genes by Weighted Gene Co-Expression Network Analysis for Lung Adenocarcinoma

IF 0.8 Q4 MATERIALS SCIENCE, BIOMATERIALS
Jichen Xu, Xianchun Zong, Qianshu Ren, Hongyu Wang, L. Zhao, Jingshuang Ji, Jiaxing Wang, Zhimin Jiao, Zhaokui Guo, X. Liang
{"title":"Identify Key Genes by Weighted Gene Co-Expression Network Analysis for Lung Adenocarcinoma","authors":"Jichen Xu, Xianchun Zong, Qianshu Ren, Hongyu Wang, L. Zhao, Jingshuang Ji, Jiaxing Wang, Zhimin Jiao, Zhaokui Guo, X. Liang","doi":"10.1142/S1793984419400026","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to identify key genes in lung adenocarcinoma (LUAD) through weighted gene co-expression network analysis (WGCNA), and to further understand the molecular mechanism of LUAD. 107 gene expression profiles were downloaded from GSE10072 in the GEO database. We performed rigorous processing of the initial gene expression profile data. Subsequently, we used WGCNA to identify disease-driven modules and enforced functional enrichment analysis. The key genes were defined as the most connected genes in the driver module and were validated using the GSE75037 and TCGA database. GSE10072 removed 41 unpaired lung samples and 4 outliers. By analyzing the 62 samples using WGCNA, we obtained 26 modules and identified the brown and magenta modules as the driving modules for the LUAD. We found that the “Cell cycle”, “Oocyte meiosis” and “Progesterone-mediated oocyte maturation” pathways may be related to the occurrence of LUAD. GSE75037 removed 8 outlier and obtained 2909 differentially expressed genes (DEGs), 26 genes (9 genes in the brown module, 17 genes in the magenta module) overlap with key genes in the driver module. The results of the survival analysis suggest that 19 genes were significantly correlated with the patient’s survival time, including KPNA2, FEN1, RRM2, TOP2A, CENPF, MCM4, BIRC5, MELK, MAD2L1, CCNB1, CCNA2, KIF11, CDKN3, NUSAP1, CEP55, AURKA, NEK2, KIF14 and CDCA8, which may be potential biomarkers or therapeutic targets for LUAD. In this study, we provide a theoretical basis for further understanding the biological mechanism of LUAD through bioinformatics analysis of LUAD.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793984419400026","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793984419400026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to identify key genes in lung adenocarcinoma (LUAD) through weighted gene co-expression network analysis (WGCNA), and to further understand the molecular mechanism of LUAD. 107 gene expression profiles were downloaded from GSE10072 in the GEO database. We performed rigorous processing of the initial gene expression profile data. Subsequently, we used WGCNA to identify disease-driven modules and enforced functional enrichment analysis. The key genes were defined as the most connected genes in the driver module and were validated using the GSE75037 and TCGA database. GSE10072 removed 41 unpaired lung samples and 4 outliers. By analyzing the 62 samples using WGCNA, we obtained 26 modules and identified the brown and magenta modules as the driving modules for the LUAD. We found that the “Cell cycle”, “Oocyte meiosis” and “Progesterone-mediated oocyte maturation” pathways may be related to the occurrence of LUAD. GSE75037 removed 8 outlier and obtained 2909 differentially expressed genes (DEGs), 26 genes (9 genes in the brown module, 17 genes in the magenta module) overlap with key genes in the driver module. The results of the survival analysis suggest that 19 genes were significantly correlated with the patient’s survival time, including KPNA2, FEN1, RRM2, TOP2A, CENPF, MCM4, BIRC5, MELK, MAD2L1, CCNB1, CCNA2, KIF11, CDKN3, NUSAP1, CEP55, AURKA, NEK2, KIF14 and CDCA8, which may be potential biomarkers or therapeutic targets for LUAD. In this study, we provide a theoretical basis for further understanding the biological mechanism of LUAD through bioinformatics analysis of LUAD.
加权基因共表达网络分析法鉴定肺腺癌关键基因
本文的目的是通过加权基因共表达网络分析(WGCNA)来鉴定肺腺癌(LUAD)的关键基因,并进一步了解LUAD的分子机制。从GEO数据库中的GSE10072下载了107个基因表达谱。我们对最初的基因表达谱数据进行了严格的处理。随后,我们使用WGCNA来识别疾病驱动的模块并进行功能富集分析。关键基因被定义为驱动模块中连接最紧密的基因,并使用GSE75037和TCGA数据库进行验证。GSE10072去除了41个未配对的肺部样本和4个异常值。通过使用WGCNA分析62个样本,我们获得了26个模块,并确定棕色和品红色模块为LUAD的驱动模块。我们发现“细胞周期”、“卵母细胞减数分裂”和“孕酮介导的卵母细胞成熟”途径可能与LUAD的发生有关。GSE75037去除了8个异常值,获得2909个差异表达基因(DEG),26个基因(棕色模块中的9个基因,品红色模块中的17个基因)与驱动模块中的关键基因重叠。生存分析结果表明,19个基因与患者的生存时间显著相关,包括KPNA2、FEN1、RRM2、TOP2A、CENPF、MCM4、BIRC5、MELK、MAD2L1、CCNB1、CCNA2、KIF11、CDKN3、NUSAP1、CEP55、AURKA、NEK2、KIF14和CDCA8,它们可能是LUAD的潜在生物标志物或治疗靶点。本研究通过对LUAD的生物信息学分析,为进一步了解LUAD的生物学机制提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Life
Nano Life MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
0.70
自引率
12.50%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信