Annihilator conditions with generalized skew derivations and Lie ideals of prime rings

IF 0.5 Q3 MATHEMATICS
V. De Filippis, N. Rehman, G. Scudo
{"title":"Annihilator conditions with generalized skew derivations and Lie ideals of prime rings","authors":"V. De Filippis, N. Rehman, G. Scudo","doi":"10.24330/ieja.1143810","DOIUrl":null,"url":null,"abstract":"Let $R$ be a prime ring, $Q_r$ its right Martindale quotient ring, $L$ a non-central Lie ideal of $R$, $n\\geq 1$ a fixed integer, $F$ and $G$ two generalized skew derivations of $R$ with the same associated automorphism, $p\\in R$ a fixed element. If $p\\bigl(F(x)F(y)-G(y)x\\bigr)^n=0$, for any $x,y \\in L$, then there exist $a,c\\in Q_r$ such that $F(x)=ax$ and $G(x)=cx$, for any $x\\in R$, with $pa=pc=0$, unless when $R$ satisfies the standard polynomial identity $s_4(x_1,\\ldots,x_4)$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1143810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a prime ring, $Q_r$ its right Martindale quotient ring, $L$ a non-central Lie ideal of $R$, $n\geq 1$ a fixed integer, $F$ and $G$ two generalized skew derivations of $R$ with the same associated automorphism, $p\in R$ a fixed element. If $p\bigl(F(x)F(y)-G(y)x\bigr)^n=0$, for any $x,y \in L$, then there exist $a,c\in Q_r$ such that $F(x)=ax$ and $G(x)=cx$, for any $x\in R$, with $pa=pc=0$, unless when $R$ satisfies the standard polynomial identity $s_4(x_1,\ldots,x_4)$.
广义偏导的湮灭子条件及素环的李理想
设$R$是素数环,$Q_R$是它的右Martindale商环,$L$是$R$的非中心李理想,$n\geq1$是一个固定整数,$F$和$G$是$R的两个广义斜导子,具有相同的关联自同构,R$中的$p\是一个不动元素。如果$p\bigl(F(x)F(y)-G(y)x\bigr)^n=0$,对于L$中的任何$x,y\,则Q_r$中存在$a,c\,使得对于r$中的任意$x\,$F(x)=ax$和$G(x)=cx$,其中$pa=pc=0$,除非$r$满足标准多项式恒等式$s_4(x_1,\ldots,x_4)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信