Pointwise characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type

IF 0.7 3区 数学 Q2 MATHEMATICS
Ryan Alvarado, Fan Wang, Dachun Yang, Wen Yuan
{"title":"Pointwise characterization of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type","authors":"Ryan Alvarado, Fan Wang, Dachun Yang, Wen Yuan","doi":"10.4064/sm210621-29-4","DOIUrl":null,"url":null,"abstract":"In this article, the authors establish the pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type via clarifying the relationship among Haj\\l asz-Sobolev spaces, Haj\\l asz-Besov and Haj\\l asz-Triebel-Lizorkin spaces, grand Besov and Triebel-Lizorkin spaces, and Besov and Triebel-Lizorkin spaces. A major novelty of this article is that all results presented in this article get rid of both the dependence on the reverse doubling condition of the measure and the metric condition of the quasi-metric under consideration. Moreover, the pointwise characterization of the inhomogeneous version is new even when the underlying space is an RD-space.","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm210621-29-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In this article, the authors establish the pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type via clarifying the relationship among Haj\l asz-Sobolev spaces, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin spaces, grand Besov and Triebel-Lizorkin spaces, and Besov and Triebel-Lizorkin spaces. A major novelty of this article is that all results presented in this article get rid of both the dependence on the reverse doubling condition of the measure and the metric condition of the quasi-metric under consideration. Moreover, the pointwise characterization of the inhomogeneous version is new even when the underlying space is an RD-space.
齐型空间上Besov和Triebel-Lizorkin空间的点刻画
本文通过阐明Haj-asz-Sobolev空间、Haj-asz Besov和Haj-asz-Triebel-Lizorkin空间、grand-Besov和Triebel-Lizolkin空间以及Besov空间和Triebel Lizorkn空间之间的关系,建立了齐型空间上Besov空间和TriebelLizorken空间的逐点刻画。本文的一个主要新颖之处在于,本文给出的所有结果都摆脱了对测度的反向加倍条件和所考虑的拟度量的度量条件的依赖。此外,即使底层空间是RD空间,非均匀版本的逐点特征也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信