{"title":"Involutions and Chern numbers of varieties","authors":"Olivier Haution","doi":"10.4171/CMH/504","DOIUrl":null,"url":null,"abstract":"Consider an involution of a smooth projective variety over a field of characteristic not two. We look at the relations between the variety and the fixed locus of the involution from the point of view of cobordism. We show in particular that the fixed locus has dimension larger than its codimension when certain Chern numbers of the variety are not divisible by two, or four. Some of those results, but not all, are analogues of theorems in algebraic topology obtained by Conner-Floyd and Boardman in the sixties. We include versions of our results concerning the vanishing loci of idempotent global derivations in characteristic two. Our approach to cobordism, following Merkurjev's, is elementary, in the sense that it does not involve resolution of singularities or homotopical methods.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/504","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Consider an involution of a smooth projective variety over a field of characteristic not two. We look at the relations between the variety and the fixed locus of the involution from the point of view of cobordism. We show in particular that the fixed locus has dimension larger than its codimension when certain Chern numbers of the variety are not divisible by two, or four. Some of those results, but not all, are analogues of theorems in algebraic topology obtained by Conner-Floyd and Boardman in the sixties. We include versions of our results concerning the vanishing loci of idempotent global derivations in characteristic two. Our approach to cobordism, following Merkurjev's, is elementary, in the sense that it does not involve resolution of singularities or homotopical methods.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.