David Salas-Monreal , Rosalinda Monreal-Jimenez , Victor Kevin Contreras-Tereza , Maria Adela Monreal-Gomez , David Alberto Salas-de-Leon , Mayra Lorena Riveron-Enzastiga
{"title":"Hydrographic variation in a tropical coral reef system: The Veracruz Reef System, Gulf of Mexico","authors":"David Salas-Monreal , Rosalinda Monreal-Jimenez , Victor Kevin Contreras-Tereza , Maria Adela Monreal-Gomez , David Alberto Salas-de-Leon , Mayra Lorena Riveron-Enzastiga","doi":"10.1016/j.oceano.2022.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Three thousand forty-one profiles of temperature, salinity, density, dissolved oxygen, nitrogen and chlorophyll-<em>a</em> were used to study their seasonal variation on a tropical coral reef system, located in the central part, of the reef corridor of the southwestern Gulf of Mexico. The results revealed three seasons according to their hydrographic variations; the northerly wind season from September to April; the dry season from May to June; and the rainy season from July to August. The results of the density ratio during the dry season were ∼1.25 on average, while during the rainy season it had an average value of ∼0.62. Thus, the pycnocline was more influenced by the halocline during the rainy season and by the thermocline during the dry season. There was also an evident variation in chlorophyll-a concentration over the water column, which was not evident in the surface layer. During the summer (rainy season), dissolved oxygen was related to chlorophyll-a concentration; while, during the winter (northern wind season), these values were related to the vertical mixing of the water column due to wind stress. There was evidence of cooler ocean water intrusion into the Veracruz Reef System during the spring-summer season below ∼10 m. Finally, a second halocline, pycnocline, and nitrocline were found near ∼30 m depth during the rainy season.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0078323422000264/pdfft?md5=276144bb0caa528ecce511e3d3c6cb50&pid=1-s2.0-S0078323422000264-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0078323422000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Three thousand forty-one profiles of temperature, salinity, density, dissolved oxygen, nitrogen and chlorophyll-a were used to study their seasonal variation on a tropical coral reef system, located in the central part, of the reef corridor of the southwestern Gulf of Mexico. The results revealed three seasons according to their hydrographic variations; the northerly wind season from September to April; the dry season from May to June; and the rainy season from July to August. The results of the density ratio during the dry season were ∼1.25 on average, while during the rainy season it had an average value of ∼0.62. Thus, the pycnocline was more influenced by the halocline during the rainy season and by the thermocline during the dry season. There was also an evident variation in chlorophyll-a concentration over the water column, which was not evident in the surface layer. During the summer (rainy season), dissolved oxygen was related to chlorophyll-a concentration; while, during the winter (northern wind season), these values were related to the vertical mixing of the water column due to wind stress. There was evidence of cooler ocean water intrusion into the Veracruz Reef System during the spring-summer season below ∼10 m. Finally, a second halocline, pycnocline, and nitrocline were found near ∼30 m depth during the rainy season.