A Nonlinear Observer to Estimate the Effective Reproduction Number of Infectious Diseases

Q2 Mathematics
A. Hasan
{"title":"A Nonlinear Observer to Estimate the Effective Reproduction Number of Infectious Diseases","authors":"A. Hasan","doi":"10.1101/2021.03.02.21252730","DOIUrl":null,"url":null,"abstract":"In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).","PeriodicalId":33129,"journal":{"name":"Communication in Biomathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication in Biomathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.03.02.21252730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number (Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the observer gain is tuned properly, this approach produces similar result compared to existing approach such as Extended Kalman filter (EKF).
估计传染病有效繁殖数的非线性观测器
本文设计了非线性观测器(NLO)来估计传染病的有效繁殖数(Rt)。NLO是根据离散时间增强的易感-感染-去除(SIR)模型设计的。通过求解线性矩阵不等式(LMI)获得观测器增益。该方法用于利用COVID-19大流行期间的流行病学数据估计雅加达的Rt。如果对观测器增益进行适当的调整,该方法与现有的扩展卡尔曼滤波(EKF)等方法相比,可以产生相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communication in Biomathematical Sciences
Communication in Biomathematical Sciences Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
7
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信