P. A. Buffon, N. T. Schwab, N. Streck, L. O. Uhlmann, Elton Ferreira Lima, Paulo Marcks, Regina Tomiozzo
{"title":"Transforming a home refrigerator into a BOD prototype for statice vernalization","authors":"P. A. Buffon, N. T. Schwab, N. Streck, L. O. Uhlmann, Elton Ferreira Lima, Paulo Marcks, Regina Tomiozzo","doi":"10.1590/2447-536x.v27i4.2401","DOIUrl":null,"url":null,"abstract":"Abstract Vernalization, natural or artificial, is a physiological requirement of some plants to meet the need for low temperatures for its complete development to occur. The objective of this article is to describe a protocol of transforming a domestic refrigerator into a BOD (Biochemical Oxygen Demand) prototype aimed at vernalizing propagating materials statice crop. The first step is to install a temperature controller to maintain a constant temperature inside the refrigerator (10 °C). Thinking of seedling vernalization, it is still necessary to install a system of lights inside the refrigerator. The control of the time that the lights remain on inside the prototype is carried out by installing a Timer adjusted so that the lights remained on, uninterruptedly, for 10 hours. To test the effective ness of the prototype, an on-farm experiment was carried out with the statice (Limonium sinuatum L.) crop at 5 locations in Rio Grande do Sul, Brazil. The seedlings were vernalized at an internal temperature of 10 °C and photoperiod of 10 hours for 3 weeks. The duration of this experiment was 8 months and at the end of this observed that statice plants were correctly vernalized because the plants emitted flower stems and showed satisfactory development throughout the growing cycle. Therefore, that the adaptation of a domestic refrigerator as a BOD economically viable and easy mounting prototype is possible. Being an excellent alternative to small producers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2447-536x.v27i4.2401","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Vernalization, natural or artificial, is a physiological requirement of some plants to meet the need for low temperatures for its complete development to occur. The objective of this article is to describe a protocol of transforming a domestic refrigerator into a BOD (Biochemical Oxygen Demand) prototype aimed at vernalizing propagating materials statice crop. The first step is to install a temperature controller to maintain a constant temperature inside the refrigerator (10 °C). Thinking of seedling vernalization, it is still necessary to install a system of lights inside the refrigerator. The control of the time that the lights remain on inside the prototype is carried out by installing a Timer adjusted so that the lights remained on, uninterruptedly, for 10 hours. To test the effective ness of the prototype, an on-farm experiment was carried out with the statice (Limonium sinuatum L.) crop at 5 locations in Rio Grande do Sul, Brazil. The seedlings were vernalized at an internal temperature of 10 °C and photoperiod of 10 hours for 3 weeks. The duration of this experiment was 8 months and at the end of this observed that statice plants were correctly vernalized because the plants emitted flower stems and showed satisfactory development throughout the growing cycle. Therefore, that the adaptation of a domestic refrigerator as a BOD economically viable and easy mounting prototype is possible. Being an excellent alternative to small producers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.