Generalized derivations of order $2$ on multilinear polynomials in prime rings

Q3 Mathematics
B. Prajapati, C. Gupta
{"title":"Generalized derivations of order $2$ on multilinear polynomials in prime rings","authors":"B. Prajapati, C. Gupta","doi":"10.30970/ms.58.1.26-35","DOIUrl":null,"url":null,"abstract":"Let $R$ be a prime ring of characteristic different from $2$ with a right Martindale quotient ring $Q_r$ and an extended centroid $C$. Let $F$ be a non zero generalized derivation of $R$ and $S$ be the set of evaluations of a non-central valued multilinear polynomial $f(x_1,\\ldots,x_n)$ over $C$. Let $p,q\\in R$ be such that \n$pF^2(u)u+F^2(u)uq=0$ for all $u\\in S$. \nThen for all $x\\in R$ one of the followings holds:1) there exists $a\\in Q_r$ such that $F(x)=ax$ or $F(x)=xa$ and $a^2=0$,2) $p=-q\\in C$,3) $f(x_1,\\ldots,x_n)^2$ is central valued on $R$ and there exists $a\\in Q_r$ such that $F(x)=ax$ with $pa^2+a^2q=0$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.1.26-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a prime ring of characteristic different from $2$ with a right Martindale quotient ring $Q_r$ and an extended centroid $C$. Let $F$ be a non zero generalized derivation of $R$ and $S$ be the set of evaluations of a non-central valued multilinear polynomial $f(x_1,\ldots,x_n)$ over $C$. Let $p,q\in R$ be such that $pF^2(u)u+F^2(u)uq=0$ for all $u\in S$. Then for all $x\in R$ one of the followings holds:1) there exists $a\in Q_r$ such that $F(x)=ax$ or $F(x)=xa$ and $a^2=0$,2) $p=-q\in C$,3) $f(x_1,\ldots,x_n)^2$ is central valued on $R$ and there exists $a\in Q_r$ such that $F(x)=ax$ with $pa^2+a^2q=0$.
素环中多元线性多项式上$2$阶的广义导数
设$R$是一个特征不同于$2$的素环,它有一个右Martindale商环$Q_r$和一个扩展质心$C$。设$F$是$R$的非零广义导数,$S$是一个非中心值的多元线性多项式$F (x_1,\ldots,x_n)$ / $C$的求值集。设$p,q\在R$中满足$pF^2(u)u+F^2(u)uq=0$对于所有$u\在S$中。那么对于R$中的所有$x\,下列条件之一成立:1)在Q_r$中存在$a\使得$F(x)=ax$或$F(x)=xa$且$a^2=0$,2) $p=-q\在C$中,3)$F(x_1,\ldots,x_n)^2$是$R$上的中心值,并且在Q_r$中存在$a\使得$F(x)=ax$且$pa^2+a^2q=0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信