L‐space surgeries on 2‐component L‐space links

IF 1.1 Q1 MATHEMATICS
Beibei Liu
{"title":"L‐space surgeries on 2‐component L‐space links","authors":"Beibei Liu","doi":"10.1112/tlm3.12027","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze L‐space surgeries on two component L‐space links. We show that if one surgery coefficient is negative for the L‐space surgery, then the corresponding link component is an unknot. If the link admits a very negative (that is, d1,d2≪0 ) L‐space surgery, it is either the unlink or the Hopf link. We also give a way to characterize the torus link T(2,2l) by observing an L‐space surgery Sd1,d23(L) with some d1d2<0 on a 2‐component L‐space link with unknotted components. For some 2‐component L‐space links, we give explicit descriptions of the L‐space surgery sets.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we analyze L‐space surgeries on two component L‐space links. We show that if one surgery coefficient is negative for the L‐space surgery, then the corresponding link component is an unknot. If the link admits a very negative (that is, d1,d2≪0 ) L‐space surgery, it is either the unlink or the Hopf link. We also give a way to characterize the torus link T(2,2l) by observing an L‐space surgery Sd1,d23(L) with some d1d2<0 on a 2‐component L‐space link with unknotted components. For some 2‐component L‐space links, we give explicit descriptions of the L‐space surgery sets.
双组分L空间链接上的L空间手术
在本文中,我们分析了两个组成部分L-空间链路上的L-空间运算。我们表明,如果L空间手术的一个手术系数为负,则相应的链接分量为unknot。如果链接允许进行非常负面的(即d1,d2≪0)L空间手术,则它要么是unlink,要么是Hopf链接。我们还给出了一种方法来表征环面链路T(2,2l),方法是在具有未命名分量的2分量L空间链路上观察具有某些d1d2<0的L空间外科Sd1,d23(L)。对于一些2分量的L空间链接,我们给出了L空间手术集的明确描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信