Boundary value matrix problems and Drazin invertible operators

Q3 Mathematics
K. Miloud Hocine
{"title":"Boundary value matrix problems and Drazin invertible operators","authors":"K. Miloud Hocine","doi":"10.30970/ms.57.1.16-22","DOIUrl":null,"url":null,"abstract":"Let $A$ and $B$ be given linear operators on Banach spaces $X$ and $Y$, we denote by $M_C$ the operator defined on $X \\oplus Y$ by $M_{C}=\\begin{pmatrix}A & C \\\\ 0 & B%\\end{pmatrix}.$In this paper, we study an abstract boundaryvalue matrix problems with a spectral parameter described by Drazin invertibile operators of the form $$\\begin{cases}U_L=\\lambda M_{C}w+F, & \\\\\\Gamma w=\\Phi, & \\end{cases}%$$where $U_L , M_C$ are upper triangular operators matrices $(2\\times 2)$ acting in Banach spaces, $\\Gamma$ is boundary operator, $F$ and $\\Phi $ are given vectors and $\\lambda $ is a complex spectral parameter.We introduce theconcept of initial boundary operators adapted to the Drazin invertibility andwe present a spectral approach for solving the problem. It can be shown thatthe considered boundary value problems are uniquely solvable and that theirsolutions are explicitly calculated. As an application we give an example to illustrate our results.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.57.1.16-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A$ and $B$ be given linear operators on Banach spaces $X$ and $Y$, we denote by $M_C$ the operator defined on $X \oplus Y$ by $M_{C}=\begin{pmatrix}A & C \\ 0 & B%\end{pmatrix}.$In this paper, we study an abstract boundaryvalue matrix problems with a spectral parameter described by Drazin invertibile operators of the form $$\begin{cases}U_L=\lambda M_{C}w+F, & \\\Gamma w=\Phi, & \end{cases}%$$where $U_L , M_C$ are upper triangular operators matrices $(2\times 2)$ acting in Banach spaces, $\Gamma$ is boundary operator, $F$ and $\Phi $ are given vectors and $\lambda $ is a complex spectral parameter.We introduce theconcept of initial boundary operators adapted to the Drazin invertibility andwe present a spectral approach for solving the problem. It can be shown thatthe considered boundary value problems are uniquely solvable and that theirsolutions are explicitly calculated. As an application we give an example to illustrate our results.
边值矩阵问题与Drazin可逆算子
设$A$和$B$为巴拿赫空间$X$和$Y$上的线性算子,我们用$M_C$表示$X \ 0 + Y$上定义的算子:$M_{C}=\begin{pmatrix}A & C \\ 0 & B%\end{pmatrix}。本文研究了一类谱参数由Drazin可逆算子描述的抽象边值矩阵问题,其形式为$$\begin{cases}U_L=\lambda M_{C}w+F, & \\\Gamma w=\Phi, & \end{cases}%$$,其中$U_L, M_C$为作用于Banach空间的上三角算子矩阵$(2\乘2)$,$\Gamma$为边界算子,$F$和$\Phi $为给定向量,$\lambda $为复谱参数。我们引入了适应Drazin可逆性的初始边界算子的概念,并给出了求解该问题的谱方法。可以证明所考虑的边值问题是唯一可解的,并且它们的解是显式计算的。作为一个应用,我们给出了一个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信