Ravneet Kaur, R. K. Tiwari, R. Maini, Sartajvir Singh
{"title":"A Framework for Crop Yield Estimation and Change Detection Using Image Fusion of Microwave and Optical Satellite Dataset","authors":"Ravneet Kaur, R. K. Tiwari, R. Maini, Sartajvir Singh","doi":"10.3390/quat6020028","DOIUrl":null,"url":null,"abstract":"Crop yield prediction is one of the crucial components of agriculture that plays an important role in the decision-making process for sustainable agriculture. Remote sensing provides the most efficient and cost-effective solution for the measurement of important agricultural parameters such as soil moisture level, but retrieval of the soil moisture contents from coarse resolution datasets, especially microwave datasets, remains a challenging task. In the present work, a machine learning-based framework is proposed to generate the enhanced resolution soil moisture products, i.e., classified maps and change maps, using an optical-based moderate resolution imaging spectroradiometer (MODIS) and microwave-based scatterometer satellite (SCATSAT-1) datasets. In the proposed framework, nearest-neighbor-based image fusion (NNIF), artificial neural networks (ANN), and post-classification-based change detection (PCCD) have been integrated to generate thematic and change maps. To confirm the effectiveness of the proposed framework, random forest post-classification-based change detection (RFPCD) has also been implemented, and it is concluded that the proposed framework achieved better results (88.67–91.80%) as compared to the RFPCD (86.80–87.80%) in the computation of change maps with σ°-HH. This study is important in terms of crop yield prediction analysis via the delivery of enhanced-resolution soil moisture products under all weather conditions.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quat6020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Crop yield prediction is one of the crucial components of agriculture that plays an important role in the decision-making process for sustainable agriculture. Remote sensing provides the most efficient and cost-effective solution for the measurement of important agricultural parameters such as soil moisture level, but retrieval of the soil moisture contents from coarse resolution datasets, especially microwave datasets, remains a challenging task. In the present work, a machine learning-based framework is proposed to generate the enhanced resolution soil moisture products, i.e., classified maps and change maps, using an optical-based moderate resolution imaging spectroradiometer (MODIS) and microwave-based scatterometer satellite (SCATSAT-1) datasets. In the proposed framework, nearest-neighbor-based image fusion (NNIF), artificial neural networks (ANN), and post-classification-based change detection (PCCD) have been integrated to generate thematic and change maps. To confirm the effectiveness of the proposed framework, random forest post-classification-based change detection (RFPCD) has also been implemented, and it is concluded that the proposed framework achieved better results (88.67–91.80%) as compared to the RFPCD (86.80–87.80%) in the computation of change maps with σ°-HH. This study is important in terms of crop yield prediction analysis via the delivery of enhanced-resolution soil moisture products under all weather conditions.