Flows, coalescence and noise. A correction

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY
Y. Jan, Olivier Raimond
{"title":"Flows, coalescence and noise. A correction","authors":"Y. Jan, Olivier Raimond","doi":"10.1214/19-aop1394","DOIUrl":null,"url":null,"abstract":"Counterexample to Remark 1.7 in [1]. Let φ be a random variable in F (i.e. φ is a random measurable mapping on a compact metric spaceM) of law Q such thatM×Ω 3 (x, ω) 7→ φ(x, ω) ∈ M is measurable. Suppose that Q is regular and let J be a regular presentation of Q. Let X be a random variable in M independent of φ. Out of φ and X, define ψ ∈ F by ψ(x) = φ(x) is x 6= X and ψ(x) = X is x = X. Then M × Ω 3 (x, ω) 7→ ψ(x, ω) ∈ M is measurable. Suppose also that the law of X has no atoms, then (reminding the definition of F) ψ and X are independent and the law of ψ is Q. Note that ψ(X) = X and (except for very special cases) we won’t have that a.s. J (ψ)(X) = ψ(X) = X.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aop1394","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Counterexample to Remark 1.7 in [1]. Let φ be a random variable in F (i.e. φ is a random measurable mapping on a compact metric spaceM) of law Q such thatM×Ω 3 (x, ω) 7→ φ(x, ω) ∈ M is measurable. Suppose that Q is regular and let J be a regular presentation of Q. Let X be a random variable in M independent of φ. Out of φ and X, define ψ ∈ F by ψ(x) = φ(x) is x 6= X and ψ(x) = X is x = X. Then M × Ω 3 (x, ω) 7→ ψ(x, ω) ∈ M is measurable. Suppose also that the law of X has no atoms, then (reminding the definition of F) ψ and X are independent and the law of ψ is Q. Note that ψ(X) = X and (except for very special cases) we won’t have that a.s. J (ψ)(X) = ψ(X) = X.
流动、聚结和噪音。更正
[1]中备注1.7的反例。设φ是律Q的F中的随机变量(即φ是紧度量空间M上的随机可测映射),使得M×Ω3(x,ω)7→ φ(x,ω)∈M是可测量的。设Q是正则的,设J是Q的正则表示。设X是M中与φ无关的随机变量。在φ和X中,定义ψ∈F为ψ(X)=φ(X)为x6=X,ψ(X)=X为X=X,则M×Ω3(X,ω)7→ ψ(x,ω)∈M是可测的。还假设X定律没有原子,那么(提醒F的定义)ψ和X是独立的,ψ定律是Q。注意ψ(X)=X,(除了非常特殊的情况)我们不会有a.s.J(ψ)(X)=ψ(X)=X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信