{"title":"Positivity of a weakly singular operator and approximation of wave scattering from the sphere","authors":"D. Duncan","doi":"10.1216/jie.2022.34.317","DOIUrl":null,"url":null,"abstract":"We investigate properties of a family of integral operators B with a weakly singular compactly supported zonal kernel function on the surface S of the unit 3D sphere. The support is over a spherical cap of height h ∈ (0,2]. Operators like this arise in some common types of approximations of time domain boundary integral equations (TDBIE) describing the scattering of acoustic waves from the surface of the sphere embedded in an infinite homogeneous medium where h is directly related to the time step size. We show that the Legendre polynomials of degree `≥ 0 satisfy ∫ h 0 P̀ (1−z2/2)dz > 0 for all h∈ (0,2] and, using spherical harmonics and the Funk-Hecke formula for the eigenvalues of B, that this is a key to unlocking positivity results for a subfamily of these operators. As well as positivity results we give detailed upper and lower bounds on the eigenvalues of B and on ∫ S u(x)(Bu)(x) dx. We give various examples of where these results are useful in numerical approximations of the TDBIE on the sphere and show that positivity of B is a necessary condition for these approximation schemes to be well-defined. We also show the connection between the results for eigenvalues and the separation of variables solution of the TDBIE on the sphere. Finally we show how this relates to scattering from an infinite flat surface and Cooke’s 1937 result ∫ r 0 J0(z)dz > 0 for all r > 0.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2022.34.317","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate properties of a family of integral operators B with a weakly singular compactly supported zonal kernel function on the surface S of the unit 3D sphere. The support is over a spherical cap of height h ∈ (0,2]. Operators like this arise in some common types of approximations of time domain boundary integral equations (TDBIE) describing the scattering of acoustic waves from the surface of the sphere embedded in an infinite homogeneous medium where h is directly related to the time step size. We show that the Legendre polynomials of degree `≥ 0 satisfy ∫ h 0 P̀ (1−z2/2)dz > 0 for all h∈ (0,2] and, using spherical harmonics and the Funk-Hecke formula for the eigenvalues of B, that this is a key to unlocking positivity results for a subfamily of these operators. As well as positivity results we give detailed upper and lower bounds on the eigenvalues of B and on ∫ S u(x)(Bu)(x) dx. We give various examples of where these results are useful in numerical approximations of the TDBIE on the sphere and show that positivity of B is a necessary condition for these approximation schemes to be well-defined. We also show the connection between the results for eigenvalues and the separation of variables solution of the TDBIE on the sphere. Finally we show how this relates to scattering from an infinite flat surface and Cooke’s 1937 result ∫ r 0 J0(z)dz > 0 for all r > 0.
期刊介绍:
Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications.
The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field.
The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.