Empirical likelihood estimation in multivariate mixture models with repeated measurements

IF 0.7 Q3 STATISTICS & PROBABILITY
Yuejiao Fu, Yukun Liu, Hsiao‐Hsuan Wang, Xiaogang Wang
{"title":"Empirical likelihood estimation in multivariate mixture models with repeated measurements","authors":"Yuejiao Fu, Yukun Liu, Hsiao‐Hsuan Wang, Xiaogang Wang","doi":"10.1080/24754269.2019.1630544","DOIUrl":null,"url":null,"abstract":"Multivariate mixtures are encountered in situations where the data are repeated or clustered measurements in the presence of heterogeneity among the observations with unknown proportions. In such situations, the main interest may be not only in estimating the component parameters, but also in obtaining reliable estimates of the mixing proportions. In this paper, we propose an empirical likelihood approach combined with a novel dimension reduction procedure for estimating parameters of a two-component multivariate mixture model. The performance of the new method is compared to fully parametric as well as almost nonparametric methods used in the literature.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"4 1","pages":"152 - 160"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2019.1630544","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2019.1630544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

Multivariate mixtures are encountered in situations where the data are repeated or clustered measurements in the presence of heterogeneity among the observations with unknown proportions. In such situations, the main interest may be not only in estimating the component parameters, but also in obtaining reliable estimates of the mixing proportions. In this paper, we propose an empirical likelihood approach combined with a novel dimension reduction procedure for estimating parameters of a two-component multivariate mixture model. The performance of the new method is compared to fully parametric as well as almost nonparametric methods used in the literature.
具有重复测量的多元混合模型的经验似然估计
多变量混合是在数据重复或聚集测量的情况下遇到的,在未知比例的观测中存在异质性。在这种情况下,主要的兴趣可能不仅在于估计组分参数,而且在于获得混合比例的可靠估计。在本文中,我们提出了一种经验似然方法结合一种新的降维过程来估计双组分多元混合模型的参数。将新方法的性能与文献中使用的全参数方法和几乎非参数方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信