Jose Ma Navarro, Adolfo Vazquez, J. Hinojosa, Saul F Moreno, V. M. Maytorena
{"title":"TRANSIENT THERMAL ANALYSIS OF A DOUBLE DUCT SOLAR ROOF CHIMNEY COUPLED WITH A SCALED ROOM","authors":"Jose Ma Navarro, Adolfo Vazquez, J. Hinojosa, Saul F Moreno, V. M. Maytorena","doi":"10.1115/1.4063185","DOIUrl":null,"url":null,"abstract":"\n This research presents a detailed transient experimental and computational study of heat transfer and airflow in a scaled room linked with a double-duct vertical roof solar chimney (SC). The analysis was made in the coupled system, varying the heat flux supplied to the roof SC absorber during the day. Experimental temperature profiles were obtained at six different depths and heights, the empirical heat transfer coefficient was computed for the SC absorber, and the variation of air changes per hour was determined. A good agreement between experimental and numerical temperature profiles and average Nusselt number (Nut), being in the latter of average difference of 3.41%. The validated computational model was used to analyze the effect of the transient heating of the SC on temperature fields and flow patterns in the thermal system. Almost symmetrical temperature and y-velocity profiles are formed in the ducts at different hours of the day, with thermal boundary layers of about 4 mm. Correlations of the Nusselt number and air changes per hour (ACH) are provided as a function of the modified Rayleigh number.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063185","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This research presents a detailed transient experimental and computational study of heat transfer and airflow in a scaled room linked with a double-duct vertical roof solar chimney (SC). The analysis was made in the coupled system, varying the heat flux supplied to the roof SC absorber during the day. Experimental temperature profiles were obtained at six different depths and heights, the empirical heat transfer coefficient was computed for the SC absorber, and the variation of air changes per hour was determined. A good agreement between experimental and numerical temperature profiles and average Nusselt number (Nut), being in the latter of average difference of 3.41%. The validated computational model was used to analyze the effect of the transient heating of the SC on temperature fields and flow patterns in the thermal system. Almost symmetrical temperature and y-velocity profiles are formed in the ducts at different hours of the day, with thermal boundary layers of about 4 mm. Correlations of the Nusselt number and air changes per hour (ACH) are provided as a function of the modified Rayleigh number.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.