Directed zero-divisor graph and skew power series rings

IF 0.6 Q3 MATHEMATICS
E. Hashemi, Marzieh Yazdanfar, A. Alhevaz
{"title":"Directed zero-divisor graph and skew power series rings","authors":"E. Hashemi, Marzieh Yazdanfar, A. Alhevaz","doi":"10.22108/TOC.2018.109048.1543","DOIUrl":null,"url":null,"abstract":"‎Let $R$ be an associative ring with identity and $Z^{ast}(R)$ be its set of non-zero zero-divisors‎. ‎Zero-divisor graphs of rings are well represented in the literature of commutative and non-commutative rings‎. ‎The directed zero-divisor graph of $R$‎, ‎denoted by $Gamma{(R)}$‎, ‎is the directed graph whose vertices are the set of non-zero zero-divisors of $R$ and for distinct non-zero zero-divisors $x,y$‎, ‎$xrightarrow y$ is an directed edge if and only if $xy=0$‎. ‎In this paper‎, ‎we connect some graph-theoretic concepts with algebraic notions‎, ‎and investigate the interplay between the ring-theoretical properties of a skew power series ring $R[[x;alpha]]$ and the graph-theoretical properties of its directed zero-divisor graph $Gamma(R[[x;alpha]])$‎. ‎In doing so‎, ‎we give a characterization of the possible diameters of $Gamma(R[[x;alpha]])$ in terms of the diameter of $Gamma(R)$‎, ‎when the base ring $R$ is reversible and right Noetherian with an‎ ‎$alpha$-condition‎, ‎namely $alpha$-compatible property‎. ‎We also provide many examples for showing the necessity of our assumptions‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"7 1","pages":"43-57"},"PeriodicalIF":0.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2018.109048.1543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

‎Let $R$ be an associative ring with identity and $Z^{ast}(R)$ be its set of non-zero zero-divisors‎. ‎Zero-divisor graphs of rings are well represented in the literature of commutative and non-commutative rings‎. ‎The directed zero-divisor graph of $R$‎, ‎denoted by $Gamma{(R)}$‎, ‎is the directed graph whose vertices are the set of non-zero zero-divisors of $R$ and for distinct non-zero zero-divisors $x,y$‎, ‎$xrightarrow y$ is an directed edge if and only if $xy=0$‎. ‎In this paper‎, ‎we connect some graph-theoretic concepts with algebraic notions‎, ‎and investigate the interplay between the ring-theoretical properties of a skew power series ring $R[[x;alpha]]$ and the graph-theoretical properties of its directed zero-divisor graph $Gamma(R[[x;alpha]])$‎. ‎In doing so‎, ‎we give a characterization of the possible diameters of $Gamma(R[[x;alpha]])$ in terms of the diameter of $Gamma(R)$‎, ‎when the base ring $R$ is reversible and right Noetherian with an‎ ‎$alpha$-condition‎, ‎namely $alpha$-compatible property‎. ‎We also provide many examples for showing the necessity of our assumptions‎.
有向零因子图与斜幂级数环
设$R$是一个有单位元的结合环,$Z^{ast}(R)$是它的非零零因子的集合。环的零因子图在交换环和非交换环的文献中有很好的表现。$R$ $的有向零因子图,用$Gamma{(R)}$ $表示,$R$ $是有向图,其顶点是$R$的非零零因子的集合,对于不同的非零零因子$x, $ y$ $, $xright $ $是有向边,当且仅当$xy=0$ $ $。在本文中,我们将一些图论概念与代数概念联系起来,研究了一个斜幂级数环$R[[x;alpha]]$的环理论性质与它的有向零因子图$Gamma(R[[x;alpha]])$的图理论性质之间的相互作用。在此过程中,我们给出了$Gamma(R[[x;alpha]])$直径的表征,当基环$R$可逆且具有$ α $-条件,即$ α $-相容性质时,$Gamma(R[[x;alpha]])$的直径。我们还提供了许多例子来说明我们假设的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信