Formality of Floer complex of the ideal boundary of hyperbolic knot complement

IF 0.5 4区 数学 Q3 MATHEMATICS
Youngjin Bae, Seonhwa Kim, Y. Oh
{"title":"Formality of Floer complex of the ideal boundary of hyperbolic knot complement","authors":"Youngjin Bae, Seonhwa Kim, Y. Oh","doi":"10.4310/ajm.2021.v25.n1.a7","DOIUrl":null,"url":null,"abstract":"This is a sequel to the authors' article [BKO](arXiv:1901.02239). We consider a hyperbolic knot $K$ in a closed 3-manifold $M$ and the cotangent bundle of its complement $M \\setminus K$. We equip $M \\setminus K$ with a hyperbolic metric $h$ and its cotangent bundle $T^*(M \\setminus K)$ with the induced kinetic energy Hamiltonian $H_h = \\frac{1}{2} |p|_h^2$ and Sasakian almost complex structure $J_h$, and associate a wrapped Fukaya category to $T^*(M\\setminus K)$ whose wrapping is given by $H_h$. We then consider the conormal $\\nu^*T$ of a horo-torus $T$ as its object. We prove that all non-constant Hamiltonian chords are transversal and of Morse index 0 relative to the horo-torus $T$, and so that the structure maps satisfy $\\widetilde{\\mathfrak m}^k = 0$ unless $k \\neq 2$ and an $A_\\infty$-algebra associated to $\\nu^*T$ is reduced to a noncommutative algebra concentrated to degree 0. We prove that the wrapped Floer cohomology $HW(\\nu^*T; H_h)$ with respect to $H_h$ is well-defined and isomorphic to the Knot Floer cohomology $HW(\\partial_\\infty(M \\setminus K))$ that was introduced in [BKO] for arbitrary knot $K \\subset M$. We also define a reduced cohomology, denoted by $\\widetilde{HW}^d(\\partial_\\infty(M \\setminus K))$, by modding out constant chords and prove that if $\\widetilde{HW}^d(\\partial_\\infty(M \\setminus K))\\neq 0$ for some $d \\geq 1$, then $K$ cannot be hyperbolic. On the other hand, we prove that all torus knots have $\\widetilde{HW}^1(\\partial_\\infty(M \\setminus K)) \\neq 0$.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n1.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

This is a sequel to the authors' article [BKO](arXiv:1901.02239). We consider a hyperbolic knot $K$ in a closed 3-manifold $M$ and the cotangent bundle of its complement $M \setminus K$. We equip $M \setminus K$ with a hyperbolic metric $h$ and its cotangent bundle $T^*(M \setminus K)$ with the induced kinetic energy Hamiltonian $H_h = \frac{1}{2} |p|_h^2$ and Sasakian almost complex structure $J_h$, and associate a wrapped Fukaya category to $T^*(M\setminus K)$ whose wrapping is given by $H_h$. We then consider the conormal $\nu^*T$ of a horo-torus $T$ as its object. We prove that all non-constant Hamiltonian chords are transversal and of Morse index 0 relative to the horo-torus $T$, and so that the structure maps satisfy $\widetilde{\mathfrak m}^k = 0$ unless $k \neq 2$ and an $A_\infty$-algebra associated to $\nu^*T$ is reduced to a noncommutative algebra concentrated to degree 0. We prove that the wrapped Floer cohomology $HW(\nu^*T; H_h)$ with respect to $H_h$ is well-defined and isomorphic to the Knot Floer cohomology $HW(\partial_\infty(M \setminus K))$ that was introduced in [BKO] for arbitrary knot $K \subset M$. We also define a reduced cohomology, denoted by $\widetilde{HW}^d(\partial_\infty(M \setminus K))$, by modding out constant chords and prove that if $\widetilde{HW}^d(\partial_\infty(M \setminus K))\neq 0$ for some $d \geq 1$, then $K$ cannot be hyperbolic. On the other hand, we prove that all torus knots have $\widetilde{HW}^1(\partial_\infty(M \setminus K)) \neq 0$.
双曲结补的理想边界花复合体形式
这是作者文章[BKO](arXiv:1901.02239)的续篇。我们考虑闭三流形$M$中的双曲结$K$及其补码$M\set减去K$的余切丛。我们为$M\set-K$配备了双曲度量$h$及其余切丛$T^*(M\set-K)$,该余切丛具有诱导动能哈密顿量$h_h=\frac{1}{2}|p|_h^2$和Sasakian几乎复杂结构$J_h$,并将一个包裹Fukaya范畴与$T^*[M\set-K-]$联系起来,其包裹由$h_h$给出。然后,我们考虑星座环面$T$的conormal$\nu^*T$作为其对象。我们证明了所有的非常数哈密顿弦都是横向的,并且Morse指数为0,相对于环面$T$,并且使得结构映射满足$\widetilde{\mathfrak m}^k=0$,除非$k\neq2$和与$\nu^*T$相关的$A_\infty$代数被降为集中到0度的非交换代数。我们证明了关于$H_H$的包裹Floer上同调$HW(\nu^*T;H_H)$是定义明确的,并且同构于[BKO]中为任意结$K\子集M$引入的Knot-Floer同调$HW(\partial_\infty(M\setminus K))$。我们还定义了一个减少的上同调,用$\widetilde{HW}^d(\partial_\infty(M\setminus K))$表示,通过对常和弦的模化,并证明了如果$\widettilde{HW}^d(\partial_\infty(M\setminus K))\neq0$对于一些$d\geq1$,那么$K$不可能是双曲的。另一方面,我们证明了所有环面结都有$\widetilde{HW}^1(\partial_\infty(M\setminus K))\neq0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信