Deep Incremental Image Classification Method Based on Double-Branch Iteration

Q4 Computer Science
何丽, 韩克平, 朱泓西, 刘颖
{"title":"Deep Incremental Image Classification Method Based on Double-Branch Iteration","authors":"何丽, 韩克平, 朱泓西, 刘颖","doi":"10.16451/J.CNKI.ISSN1003-6059.202002007","DOIUrl":null,"url":null,"abstract":"To solve the catastrophic forgetting problem caused by incremental learning,a deep incremental image classification method based on double-branch iteration is proposed.The primary network is utilized to store the acquired old class knowledge,while the branch network is exploited to learn the new class knowledge.The parameters of the branch network are optimized by the weight of the primary network in the incremental iteration process.Density peak clustering method is employed to select typical samples from the iterative dataset and construct retention set.The retention set is added into the incremental iteration training to mitigate catastrophic forgetting.The experiments demonstrate the better performance of the proposed method.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202002007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the catastrophic forgetting problem caused by incremental learning,a deep incremental image classification method based on double-branch iteration is proposed.The primary network is utilized to store the acquired old class knowledge,while the branch network is exploited to learn the new class knowledge.The parameters of the branch network are optimized by the weight of the primary network in the incremental iteration process.Density peak clustering method is employed to select typical samples from the iterative dataset and construct retention set.The retention set is added into the incremental iteration training to mitigate catastrophic forgetting.The experiments demonstrate the better performance of the proposed method.
基于双分支迭代的深度增量图像分类方法
为了解决增量学习导致的灾难性遗忘问题,提出了一种基于双分支迭代的深度增量图像分类方法。利用主网络存储已获取的旧类知识,利用分支网络学习新的类知识。在增量迭代过程中,利用主网络的权重对分支网络的参数进行优化。采用密度峰聚类方法从迭代数据集中选取典型样本,构建保留集。将保留集添加到增量迭代训练中,以减轻灾难性遗忘。实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信