Construction of a Multilingual Annotated Corpus for Deeper Sentiment Understanding in Social Media

Q4 Computer Science
Yujie Lu, Kotaro Sakamoto, Hideyuki Shibuki, Tatsunori Mori
{"title":"Construction of a Multilingual Annotated Corpus for Deeper Sentiment Understanding in Social Media","authors":"Yujie Lu, Kotaro Sakamoto, Hideyuki Shibuki, Tatsunori Mori","doi":"10.5715/JNLP.24.205","DOIUrl":null,"url":null,"abstract":"The surge of social media makes it possible to understand people’s emotion in different cultures. In this paper, we construct an annotated corpus for multilingual sentiment understanding. The annotation is developed in a multilingual setting including English/Japanese/Chinese, and on a representative dataset including 4 topics (spanning 3 genres, which are product, people, and event).To deep understand expression mechanism of feeling entailed in the text, we labelled sentimental signal words and rhetoric phenomenon in addition to overall polarity. This innovative corpus can be a helpful resource for the improvement of sentiment classification, cross-cultural comparison etc.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"24 1","pages":"205-265"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5715/JNLP.24.205","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.24.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7

Abstract

The surge of social media makes it possible to understand people’s emotion in different cultures. In this paper, we construct an annotated corpus for multilingual sentiment understanding. The annotation is developed in a multilingual setting including English/Japanese/Chinese, and on a representative dataset including 4 topics (spanning 3 genres, which are product, people, and event).To deep understand expression mechanism of feeling entailed in the text, we labelled sentimental signal words and rhetoric phenomenon in addition to overall polarity. This innovative corpus can be a helpful resource for the improvement of sentiment classification, cross-cultural comparison etc.
构建多语言注释语料库以加深对社交媒体情感的理解
社交媒体的兴起使得理解不同文化中人们的情感成为可能。在本文中,我们构建了一个用于多语言情感理解的标注语料库。该注释是在包括英语/日语/中文在内的多语言环境中开发的,并且是在包含4个主题(跨越3种类型,即产品、人物和事件)的代表性数据集上开发的。为了深入理解语篇所蕴含的情感表达机制,除了整体极性外,我们还标注了情感信号词和修辞现象。该创新语料库可为情感分类、跨文化比较等方面的改进提供有益的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信