A Numerical Method For Solving Fractional Optimal Control Problems Using The Operational Matrix Of Mott Polynomials

IF 1.1 Q2 MATHEMATICS, APPLIED
S. A. Alavi, A. Haghighi, A. Yari, F. Soltanian
{"title":"A Numerical Method For Solving Fractional Optimal Control Problems Using The Operational Matrix Of Mott Polynomials","authors":"S. A. Alavi, A. Haghighi, A. Yari, F. Soltanian","doi":"10.22034/CMDE.2021.39419.1728","DOIUrl":null,"url":null,"abstract":"‎This paper presents a numerical method for solving a class of fractional optimal control problems (FOCPs) based on numerical polynomial approximation‎. ‎The fractional derivative in the dynamic system is described in the Caputo sense‎. ‎We used the approach in order to approximate the state and control functions by the Mott polynomials (M-polynomials)‎. ‎We introduced the operational matrix of fractional Riemann-Liouville integration and apply it to approximate the fractional derivative of the basis‎. ‎We investigated the convergence of the new method and some examples are included to demonstrate the validity and applicability of the proposed method‎.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.39419.1728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

‎This paper presents a numerical method for solving a class of fractional optimal control problems (FOCPs) based on numerical polynomial approximation‎. ‎The fractional derivative in the dynamic system is described in the Caputo sense‎. ‎We used the approach in order to approximate the state and control functions by the Mott polynomials (M-polynomials)‎. ‎We introduced the operational matrix of fractional Riemann-Liouville integration and apply it to approximate the fractional derivative of the basis‎. ‎We investigated the convergence of the new method and some examples are included to demonstrate the validity and applicability of the proposed method‎.
利用莫特多项式的运算矩阵求解分数阶最优控制问题的数值方法
本文提出了一种基于数值多项式近似求解一类分数阶最优控制问题(FOCPs)的数值方法。动态系统中的分数阶导数用卡普托意义来描述。我们使用该方法是为了通过莫特多项式(m -多项式)近似状态和控制函数。我们引入了分数阶Riemann-Liouville积分的运算矩阵,并应用它来近似基的分数阶导数。研究了新方法的收敛性,并通过算例验证了该方法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信