{"title":"Analytically Simple and Computationally Efficient Results for the GIX/Geo/c Queues","authors":"M. Chaudhry, James J. Kim, A. Banik","doi":"10.1155/2019/6480139","DOIUrl":null,"url":null,"abstract":"A simple solution to determine the distributions of queue-lengths at different observation epochs for the model GIX/Geo/c is presented. In the past, various discrete-time queueing models, particularly the multiserver bulk-arrival queues, have been solved using complicated methods that lead to incomplete results. The purpose of this paper is to use the roots method to solve the model GIX/Geo/c that leads to a result that is analytically elegant and computationally efficient. This method works well even for the case when the inter-batch-arrival times follow heavy-tailed distributions. The roots of the underlying characteristic equation form the basis for all distributions of queue-lengths at different time epochs.","PeriodicalId":44760,"journal":{"name":"Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6480139","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6480139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5
Abstract
A simple solution to determine the distributions of queue-lengths at different observation epochs for the model GIX/Geo/c is presented. In the past, various discrete-time queueing models, particularly the multiserver bulk-arrival queues, have been solved using complicated methods that lead to incomplete results. The purpose of this paper is to use the roots method to solve the model GIX/Geo/c that leads to a result that is analytically elegant and computationally efficient. This method works well even for the case when the inter-batch-arrival times follow heavy-tailed distributions. The roots of the underlying characteristic equation form the basis for all distributions of queue-lengths at different time epochs.