{"title":"KP hierarchy for Hurwitz-type cohomological field theories","authors":"Reinier Kramer","doi":"10.4310/cntp.2023.v17.n2.a1","DOIUrl":null,"url":null,"abstract":"We generalise a result of Kazarian regarding Kadomtsev-Petviashvili integrability for single Hodge integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric tau-functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological recursion, as well as the Eynard-DOSS correspondence between topological recursion and cohomological field theories. In particular, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a Calabi-Yau condition.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n2.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We generalise a result of Kazarian regarding Kadomtsev-Petviashvili integrability for single Hodge integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric tau-functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological recursion, as well as the Eynard-DOSS correspondence between topological recursion and cohomological field theories. In particular, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a Calabi-Yau condition.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.