An inner boundary condition for solar wind models based on coronal density

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
K. A. Bunting, H. Morgan
{"title":"An inner boundary condition for solar wind models based on coronal density","authors":"K. A. Bunting, H. Morgan","doi":"10.1051/swsc/2022026","DOIUrl":null,"url":null,"abstract":"Accurate forecasting of the solar wind has grown in importance as society becomes increasingly dependent on technology that is susceptible to space weather events. This work describes an inner boundary condition for ambient solar wind models based on tomography maps of the coronal plasma density gained from coronagraph observations, providing a novel alternative to magnetic extrapolations. The tomographical density maps provide a direct constraint of the coronal structure at heliocentric distances of 4 to 8 Rs, thus avoiding the need to model the complex non-radial lower corona. An empirical inverse relationship converts densities to solar wind velocities which are used as an inner boundary condition by the Heliospheric Upwind Extrapolation (HUXt) model to give ambient solar wind velocity at Earth. The dynamic time warping (DTW) algorithm is used to quantify the agreement between tomography/HUXt output and insitu data. An exhaustive search method is then used to adjust the lower boundary velocity range in order to optimize the model. Early results show a 40% decrease in mean absolute error between measured and modelled velocities compared to that of the coupled MAS/HUXt model. The use of density maps gained from tomography as an inner boundary constraint is thus a valid alternative to coronal magnetic models, and offers a significant advancement in the field given the availability of routine space-based coronagraph observations.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2022026","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6

Abstract

Accurate forecasting of the solar wind has grown in importance as society becomes increasingly dependent on technology that is susceptible to space weather events. This work describes an inner boundary condition for ambient solar wind models based on tomography maps of the coronal plasma density gained from coronagraph observations, providing a novel alternative to magnetic extrapolations. The tomographical density maps provide a direct constraint of the coronal structure at heliocentric distances of 4 to 8 Rs, thus avoiding the need to model the complex non-radial lower corona. An empirical inverse relationship converts densities to solar wind velocities which are used as an inner boundary condition by the Heliospheric Upwind Extrapolation (HUXt) model to give ambient solar wind velocity at Earth. The dynamic time warping (DTW) algorithm is used to quantify the agreement between tomography/HUXt output and insitu data. An exhaustive search method is then used to adjust the lower boundary velocity range in order to optimize the model. Early results show a 40% decrease in mean absolute error between measured and modelled velocities compared to that of the coupled MAS/HUXt model. The use of density maps gained from tomography as an inner boundary constraint is thus a valid alternative to coronal magnetic models, and offers a significant advancement in the field given the availability of routine space-based coronagraph observations.
基于日冕密度的太阳风模型的内边界条件
随着社会越来越依赖易受空间天气事件影响的技术,准确预测太阳风变得越来越重要。这项工作描述了环境太阳风模型的内部边界条件,该模型基于日冕仪观测获得的日冕等离子体密度层析成像图,为磁外推提供了一种新的替代方法。层析密度图提供了日心距离为4至8 Rs的日冕结构的直接约束,从而避免了对复杂的非径向下日冕进行建模的需要。经验反比关系将密度转换为太阳风速度,太阳圈逆风外推(HUXt)模型将其用作内部边界条件,以给出地球上的环境太阳风速度。动态时间规整(DTW)算法用于量化层析成像/HUXt输出与原位数据之间的一致性。然后采用穷举搜索法调整下边界速度范围,以优化模型。早期结果表明,与MAS/HUXt耦合模型相比,测量速度和模拟速度之间的平均绝对误差降低了40%。因此,使用从断层扫描获得的密度图作为内部边界约束是日冕磁模型的有效替代方案,并且鉴于常规天基日冕仪观测的可用性,在该领域提供了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信