TIME-VARYING SEISMIC WAVELET ESTIMATION FROM NONSTATIONARY SEISMIC DATA

FENG Wei, HU Tian-Yue, YAO Feng-Chang, ZHANG Yan, Cui Yong-Fu, PENG Geng-Xin
{"title":"TIME-VARYING SEISMIC WAVELET ESTIMATION FROM NONSTATIONARY SEISMIC DATA","authors":"FENG Wei,&nbsp;HU Tian-Yue,&nbsp;YAO Feng-Chang,&nbsp;ZHANG Yan,&nbsp;Cui Yong-Fu,&nbsp;PENG Geng-Xin","doi":"10.1002/cjg2.30038","DOIUrl":null,"url":null,"abstract":"<p>Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose reliability is directly related to the results of deconvolution and inversion. The methods for seismic wavelet estimation can be classified into two basic types: deterministic and statistical. By combining the deterministic spectral coherence method and the statistical skewness attribute method, the amplitude and phase of the time-varying wavelet are estimated separately. There is no assumption on the wavelet's time-independent nature or the phase characteristic. The advantage of this method is the ability to estimate time-varying phase. Phase-only corrections can then be applied by means of a time-varying phase rotation. Alternatively, amplitude and phase deconvolution can be achieved to enhance the resolution and support the fine reservoir prediction and description. We illustrate the method with both synthetic and real data examples. Synthetic examples certify its feasibility while real data example demonstrates the ability to estimate the time-varying characteristic of wavelets.</p>","PeriodicalId":100242,"journal":{"name":"Chinese Journal of Geophysics","volume":"60 2","pages":"191-202"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cjg2.30038","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjg2.30038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Seismic wavelet estimation is an important part of seismic data processing and interpretation, whose reliability is directly related to the results of deconvolution and inversion. The methods for seismic wavelet estimation can be classified into two basic types: deterministic and statistical. By combining the deterministic spectral coherence method and the statistical skewness attribute method, the amplitude and phase of the time-varying wavelet are estimated separately. There is no assumption on the wavelet's time-independent nature or the phase characteristic. The advantage of this method is the ability to estimate time-varying phase. Phase-only corrections can then be applied by means of a time-varying phase rotation. Alternatively, amplitude and phase deconvolution can be achieved to enhance the resolution and support the fine reservoir prediction and description. We illustrate the method with both synthetic and real data examples. Synthetic examples certify its feasibility while real data example demonstrates the ability to estimate the time-varying characteristic of wavelets.

基于非平稳地震资料的时变地震小波估计
地震小波估计是地震资料处理和解释的重要组成部分,其可靠性直接关系到反褶积和反演的结果。地震小波估计的方法可以分为两种基本类型:确定性估计和统计估计。结合确定性谱相干法和统计偏度属性法,分别估计时变小波的幅值和相位。没有对小波的时间无关性或相位特性的假设。该方法的优点是能够估计时变相位。然后,可以通过时变相位旋转来应用纯相位校正。此外,还可以实现振幅和相位反褶积,以提高分辨率,支持精细储层的预测和描述。我们用综合数据和实际数据实例来说明该方法。综合算例验证了该方法的可行性,实际数据算例验证了小波时变特性的估计能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信