Epsilon-regularity for the solutions of a free boundary system

IF 1.3 2区 数学 Q1 MATHEMATICS
Francesco Paolo Maiale, Giorgio Tortone, B. Velichkov
{"title":"Epsilon-regularity for the solutions of a free boundary system","authors":"Francesco Paolo Maiale, Giorgio Tortone, B. Velichkov","doi":"10.4171/rmi/1430","DOIUrl":null,"url":null,"abstract":"This paper is dedicated to a free boundary system arising in the study of a class of shape optimization problems. The problem involves three variables: two functions $u$ and $v$, and a domain $\\Omega$; with $u$ and $v$ being both positive in $\\Omega$, vanishing simultaneously on $\\partial\\Omega$ and satisfying an overdetermined boundary value problem involving the product of their normal derivatives on $\\partial\\Omega$. Precisely, we consider solutions $u, v \\in C(B_1)$ of $$-\\Delta u= f \\quad\\text{and} \\quad-\\Delta v=g\\quad\\text{in}\\quad \\Omega=\\{u>0\\}=\\{v>0\\}\\ ,\\qquad \\frac{\\partial u}{\\partial n}\\frac{\\partial v}{\\partial n}=Q\\quad\\text{on}\\quad \\partial\\Omega\\cap B_1.$$ Our main result is an epsilon-regularity theorem for viscosity solutions of this free boundary system. We prove a partial Harnack inequality near flat points for the couple of auxiliary functions $\\sqrt{uv}$ and $\\frac12(u+v)$. Then, we use the gained space near the free boundary to transfer the improved flatness to the original solutions. Finally, using the partial Harnack inequality, we obtain an improvement-of-flatness result, which allows to conclude that flatness implies $C^{1,\\alpha}$ regularity.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is dedicated to a free boundary system arising in the study of a class of shape optimization problems. The problem involves three variables: two functions $u$ and $v$, and a domain $\Omega$; with $u$ and $v$ being both positive in $\Omega$, vanishing simultaneously on $\partial\Omega$ and satisfying an overdetermined boundary value problem involving the product of their normal derivatives on $\partial\Omega$. Precisely, we consider solutions $u, v \in C(B_1)$ of $$-\Delta u= f \quad\text{and} \quad-\Delta v=g\quad\text{in}\quad \Omega=\{u>0\}=\{v>0\}\ ,\qquad \frac{\partial u}{\partial n}\frac{\partial v}{\partial n}=Q\quad\text{on}\quad \partial\Omega\cap B_1.$$ Our main result is an epsilon-regularity theorem for viscosity solutions of this free boundary system. We prove a partial Harnack inequality near flat points for the couple of auxiliary functions $\sqrt{uv}$ and $\frac12(u+v)$. Then, we use the gained space near the free boundary to transfer the improved flatness to the original solutions. Finally, using the partial Harnack inequality, we obtain an improvement-of-flatness result, which allows to conclude that flatness implies $C^{1,\alpha}$ regularity.
自由边界系统解的ε正则性
本文研究了一类形状优化问题中出现的自由边界系统。该问题涉及三个变量:两个函数$u$和$v$,以及一个域$\Omega$;$u$和$v$在$\Omega$上都是正的,在$\partial\Omega$上同时消失,并且满足一个超定边值问题,涉及它们在$\partial\Omega$上的法向导数的乘积。确切地说,我们考虑$$-\Delta u= f \quad\text{and} \quad-\Delta v=g\quad\text{in}\quad \Omega=\{u>0\}=\{v>0\}\ ,\qquad \frac{\partial u}{\partial n}\frac{\partial v}{\partial n}=Q\quad\text{on}\quad \partial\Omega\cap B_1.$$的解$u, v \in C(B_1)$。我们的主要结果是该自由边界系统粘度解的一个ε -正则定理。我们证明了一对辅助函数$\sqrt{uv}$和$\frac12(u+v)$在平坦点附近的一个偏Harnack不等式。然后,利用获得的自由边界附近空间将改进后的平面度传递到原解中。最后,利用部分Harnack不等式,我们得到了平面性的改进结果,从而得出平面性隐含$C^{1,\alpha}$正则性的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信