{"title":"A two-stage stochastic programming approach for production planning system with seasonal demand","authors":"A. Mahmoud, M. Aly, A. Mohib, I. Afefy","doi":"10.24425/MPER.2020.132941","DOIUrl":null,"url":null,"abstract":"Received: 6 October 2019 Abstract Accepted: 29 December 2019 Seasonality is a function of a time series in which the data experiences regular and predictable changes that repeat each calendar year. Two-stage stochastic programming model for real industrial systems at the case of a seasonal demand is presented. Sampling average approximation (SAA) method was applied to solve a stochastic model which gave a productive structure for distinguishing and statistically testing a different production plan. Lingo tool is developed to obtain the optimal solution for the proposed model which is validated by Math works Matlab. The actual data of the industrial system; from the General Manufacturing Company, was applied to examine the proposed model. Seasonal future demand is then estimated using the multiplicative seasonal method, the effect of seasonality was presented and discussed. One might say that the proposed model is viewed as a moderately accurate tool for industrial systems in case of seasonal demand. The current research may be considered a significant tool in case of seasonal demand. To illustrate the applicability of the proposed model a numerical example is solved using the proposed technique. ANOVA analysis is applied using MINITAB 17 statistical software to validate the obtained results.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/MPER.2020.132941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Received: 6 October 2019 Abstract Accepted: 29 December 2019 Seasonality is a function of a time series in which the data experiences regular and predictable changes that repeat each calendar year. Two-stage stochastic programming model for real industrial systems at the case of a seasonal demand is presented. Sampling average approximation (SAA) method was applied to solve a stochastic model which gave a productive structure for distinguishing and statistically testing a different production plan. Lingo tool is developed to obtain the optimal solution for the proposed model which is validated by Math works Matlab. The actual data of the industrial system; from the General Manufacturing Company, was applied to examine the proposed model. Seasonal future demand is then estimated using the multiplicative seasonal method, the effect of seasonality was presented and discussed. One might say that the proposed model is viewed as a moderately accurate tool for industrial systems in case of seasonal demand. The current research may be considered a significant tool in case of seasonal demand. To illustrate the applicability of the proposed model a numerical example is solved using the proposed technique. ANOVA analysis is applied using MINITAB 17 statistical software to validate the obtained results.
期刊介绍:
Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.