Subexponential densities of compound Poisson sums and the supremum of a random walk

Pub Date : 2020-01-29 DOI:10.1215/21562261-2022-0041
Takaaki Shimura, Toshiro Watanabe
{"title":"Subexponential densities of compound Poisson sums and the supremum of a random walk","authors":"Takaaki Shimura, Toshiro Watanabe","doi":"10.1215/21562261-2022-0041","DOIUrl":null,"url":null,"abstract":"We characterize the subexponential densities on $(0,\\infty)$ for compound Poisson distributions on $[0,\\infty)$ with absolutely continuous Levy measures. As a corollary, we show that the class of all subexponential probability density functions on $\\mathbb R_+$ is closed under generalized convolution roots of compound Poisson sums. Moreover, we give an application to the subexponential density on $(0,\\infty)$ for the distribution of the supremum of a random walk.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We characterize the subexponential densities on $(0,\infty)$ for compound Poisson distributions on $[0,\infty)$ with absolutely continuous Levy measures. As a corollary, we show that the class of all subexponential probability density functions on $\mathbb R_+$ is closed under generalized convolution roots of compound Poisson sums. Moreover, we give an application to the subexponential density on $(0,\infty)$ for the distribution of the supremum of a random walk.
分享
查看原文
复合Poisson和的次指数密度与随机游动的上确界
我们刻画了上的复合Poisson分布在$(0,\infty)$上的次指数密度$作为一个推论,我们证明了$\mathbb R_+$上的所有次指数概率密度函数类在复合Poisson和的广义卷积根下是闭的。此外,我们还给出了随机游动上确界分布在$(0,\infty)$上的次指数密度的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信