$k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$

IF 0.5 4区 数学 Q3 MATHEMATICS
S. Cichacz, Agnieszka Gőrlich, Karol Suchan
{"title":"$k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$","authors":"S. Cichacz, Agnieszka Gőrlich, Karol Suchan","doi":"10.7151/dmgt.2504","DOIUrl":null,"url":null,"abstract":"Vertex-fault-tolerance was introduced by Hayes~\\cite{Hayes1976} in 1976, and since then it has been systematically studied in different aspects. In this paper we study $k$-vertex-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$, i.e., graphs in which removing any $k$ vertices leaves a graph that has $p$ disjoint complete graphs of order $c$ as a subgraph. The main contribution is to describe such graphs that have the smallest possible number of edges for $k=1$, $p \\geq 1$, and $c \\geq 3$. Moreover, we analyze some properties of such graphs for any value of $k$.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2504","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Vertex-fault-tolerance was introduced by Hayes~\cite{Hayes1976} in 1976, and since then it has been systematically studied in different aspects. In this paper we study $k$-vertex-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$, i.e., graphs in which removing any $k$ vertices leaves a graph that has $p$ disjoint complete graphs of order $c$ as a subgraph. The main contribution is to describe such graphs that have the smallest possible number of edges for $k=1$, $p \geq 1$, and $c \geq 3$. Moreover, we analyze some properties of such graphs for any value of $k$.
$p$c阶不相交完全图的$k$-容错图$
顶点容错是由Hayes~\cite{Hayes1976}于1976年提出的,从那时起,人们对它进行了不同方面的系统研究。在本文中,我们研究了$c$阶$p$不相交完全图的$k$-顶点容错图,即其中移除任何$k$顶点留下具有$c$级$p$非相交完全图作为子图的图。主要贡献是描述对于$k=1$、$p\geq1$和$c\geq3$具有尽可能少的边的图。此外,我们还分析了对于$k$的任何值,这种图的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信