{"title":"Unsupervised Deep learning-based Feature Fusion Approach for Detection and Analysis of COVID-19 using X-ray and CT Images","authors":"Vinayakumar Ravi, T. Pham","doi":"10.2174/18750362-v15-e2207290","DOIUrl":null,"url":null,"abstract":"\n \n This study investigates an unsupervised deep learning-based feature fusion approach for the detection and analysis of COVID-19 using chest X-ray (CXR) and Computed tomography (CT) images.\n \n \n \n The outbreak of COVID-19 has affected millions of people all around the world and the disease is diagnosed by the reverse transcription-polymerase chain reaction (RT-PCR) test which suffers from a lower viral load, and sampling error, etc. Computed tomography (CT) and chest X-ray (CXR) scans can be examined as most infected people suffer from lungs infection. Both CT and CXR imaging techniques are useful for the COVID-19 diagnosis at an early stage and it is an alternative to the RT-PCR test.\n \n \n \n The manual diagnosis of CT scans and CXR images are labour-intensive and consumes a lot of time. To handle this situation, many AI-based solutions are researched including deep learning-based detection models, which can be used to help the radiologist to make a better diagnosis. However, the availability of annotated data for COVID-19 detection is limited due to the need for domain expertise and expensive annotation cost. Also, most existing state-of-the-art deep learning-based detection models follow a supervised learning approach. Therefore, in this work, we have explored various unsupervised learning models for COVID-19 detection which does not need a labelled dataset.\n \n \n \n In this work, we propose an unsupervised deep learning-based COVID-19 detection approach that incorporates the feature fusion method for performance enhancement. Four different sets of experiments are run on both CT and CXR scan datasets where convolutional autoencoders, pre-trained CNNs, hybrid, and PCA-based models are used for feature extraction and K-means and GMM techniques are used for clustering.\n \n \n \n The maximum accuracy of 84% is achieved by the model Autoencoder3-ResNet50 (GMM) on the CT dataset and for the CXR dataset, both Autoencoder1-VGG16 (KMeans and GMM) models achieved 70% accuracy.\n \n \n \n Our proposed deep unsupervised learning, feature fusion-based COVID-19 detection approach achieved promising results on both datasets. It also outperforms four well-known existing unsupervised approaches.\n","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/18750362-v15-e2207290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates an unsupervised deep learning-based feature fusion approach for the detection and analysis of COVID-19 using chest X-ray (CXR) and Computed tomography (CT) images.
The outbreak of COVID-19 has affected millions of people all around the world and the disease is diagnosed by the reverse transcription-polymerase chain reaction (RT-PCR) test which suffers from a lower viral load, and sampling error, etc. Computed tomography (CT) and chest X-ray (CXR) scans can be examined as most infected people suffer from lungs infection. Both CT and CXR imaging techniques are useful for the COVID-19 diagnosis at an early stage and it is an alternative to the RT-PCR test.
The manual diagnosis of CT scans and CXR images are labour-intensive and consumes a lot of time. To handle this situation, many AI-based solutions are researched including deep learning-based detection models, which can be used to help the radiologist to make a better diagnosis. However, the availability of annotated data for COVID-19 detection is limited due to the need for domain expertise and expensive annotation cost. Also, most existing state-of-the-art deep learning-based detection models follow a supervised learning approach. Therefore, in this work, we have explored various unsupervised learning models for COVID-19 detection which does not need a labelled dataset.
In this work, we propose an unsupervised deep learning-based COVID-19 detection approach that incorporates the feature fusion method for performance enhancement. Four different sets of experiments are run on both CT and CXR scan datasets where convolutional autoencoders, pre-trained CNNs, hybrid, and PCA-based models are used for feature extraction and K-means and GMM techniques are used for clustering.
The maximum accuracy of 84% is achieved by the model Autoencoder3-ResNet50 (GMM) on the CT dataset and for the CXR dataset, both Autoencoder1-VGG16 (KMeans and GMM) models achieved 70% accuracy.
Our proposed deep unsupervised learning, feature fusion-based COVID-19 detection approach achieved promising results on both datasets. It also outperforms four well-known existing unsupervised approaches.
期刊介绍:
The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.