{"title":"On the local finite separability of finitely generated associative rings","authors":"S. Kublanovskiĭ","doi":"10.1090/spmj/1751","DOIUrl":null,"url":null,"abstract":"It is proved that analogs of the theorems of M. Hall and N. S. Romanovskii are not true in the class of commutative rings. Necessary and sufficient conditions for the local finite separability of monogenic rings are established. As a corollary, it is proved that a finitely generated torsion-free PI-ring is locally finitely separable if and only if its additive group is finitely generated.","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1751","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is proved that analogs of the theorems of M. Hall and N. S. Romanovskii are not true in the class of commutative rings. Necessary and sufficient conditions for the local finite separability of monogenic rings are established. As a corollary, it is proved that a finitely generated torsion-free PI-ring is locally finitely separable if and only if its additive group is finitely generated.
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.