Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle

Q3 Engineering
Jingang Li, Ye He, Shijun Yuan, D. Qiao, Deshui Yu, Zhiyuan Li
{"title":"Study on sinusoidal estimation deviation of electrostatic actuated MEMS mirror torsion angle","authors":"Jingang Li, Ye He, Shijun Yuan, D. Qiao, Deshui Yu, Zhiyuan Li","doi":"10.1051/jnwpu/20234120338","DOIUrl":null,"url":null,"abstract":"Electrostatic MEMS micromirrors usually work in resonant state to obtain large amplitude of torsion angle. The real-time prediction of MEMS micromirror torsion angle is calculated according to the measured resonant amplitude and phase under the assumption that the relationship between the torsion angle and time is sinusoidal. However, there are few reports on the deviation of this torsion angle predication based on sinusoidal assumption. In this paper, the real resonant torsion trajectory of C1100 MEMS micromirror under different driving frequencies and voltages is measured by using microscopic laser Doppler method, and the deviation between the real trajectory and the trajectory fitted by sinusoidal curve is compared. The results show that the real trajectory of the MEMS micromirror driven by square wave is not completely consistent with the sinusoidal estimation, and the deviation increases with the increase of the torsional angle amplitude. By obtaining the frequency domain components of the torsion angle signal using FFT method, the main reason of this prediction deviation is due to composition of harmonic signals on base frequency signal. The research results reveal that the sinusoidal assumption method is only suitable for situations when the optical angle accuracy is less than 0.1°.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20234120338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electrostatic MEMS micromirrors usually work in resonant state to obtain large amplitude of torsion angle. The real-time prediction of MEMS micromirror torsion angle is calculated according to the measured resonant amplitude and phase under the assumption that the relationship between the torsion angle and time is sinusoidal. However, there are few reports on the deviation of this torsion angle predication based on sinusoidal assumption. In this paper, the real resonant torsion trajectory of C1100 MEMS micromirror under different driving frequencies and voltages is measured by using microscopic laser Doppler method, and the deviation between the real trajectory and the trajectory fitted by sinusoidal curve is compared. The results show that the real trajectory of the MEMS micromirror driven by square wave is not completely consistent with the sinusoidal estimation, and the deviation increases with the increase of the torsional angle amplitude. By obtaining the frequency domain components of the torsion angle signal using FFT method, the main reason of this prediction deviation is due to composition of harmonic signals on base frequency signal. The research results reveal that the sinusoidal assumption method is only suitable for situations when the optical angle accuracy is less than 0.1°.
静电驱动MEMS反射镜扭转角正弦估计偏差的研究
静电微机电系统微镜通常工作在谐振状态,以获得较大的扭转角幅度。在假设扭转角与时间成正弦关系的前提下,根据测量到的谐振幅值和相位计算MEMS微镜扭转角的实时预测。然而,关于基于正弦假设的扭转角预测偏差的报道很少。本文采用显微激光多普勒法测量了C1100 MEMS微镜在不同驱动频率和电压下的真实谐振扭转轨迹,并比较了真实轨迹与正弦曲线拟合轨迹的偏差。结果表明,在方波驱动下,MEMS微镜的真实轨迹与正弦估计并不完全一致,偏差随着扭角幅值的增加而增大。通过FFT方法获取扭角信号的频域分量,发现这种预测偏差的主要原因是谐波信号在基频信号上的构成。研究结果表明,正弦假设法仅适用于光角精度小于0.1°的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信