{"title":"(g)etting to the point: The problem with water risk and uncertainty","authors":"Adam Loch, David Adamson, Christopher Auricht","doi":"10.1016/j.wre.2019.100154","DOIUrl":null,"url":null,"abstract":"<div><p>Where we may be aware that a problem exists, but have only an incomplete description of the drivers and/or possible management solutions, we will be unaware/uncertain about future returns from, and risks to, private and public investments in capital (i.e. social, natural, economic, cultural and political). This paper explores the unawareness/uncertainty problem by coupling Arrow's states of nature approach for dealing with uncertainty with Rothschild and Stiglitz's exploration of inputs and increasing risk. This results in a modified Just-Pope production function equation isolating inputs to i) protect base capital (natural, social or private) and/or ii) generate an output. By exploring water input supply unawareness via alternative states of nature we may identify tipping points where current technology fails, resulting in irreversible losses of private and public capital tied to water inputs. We conclude by discussing the value of quantifying minimum-input requirements and identifying critical tipping-point outcomes in water systems, increased benefits/risks from transformed landscapes chasing higher economic returns, and the need for adaptive public arrangements in response. These insights may help us to understand future risk to natural capital from rising incentives to steal increasingly constrained resources that may trigger revised risk-sharing arrangements, and some limits to analyses relying on perfect foresight requirements by decision-makers.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.wre.2019.100154","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212428419300350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 16
Abstract
Where we may be aware that a problem exists, but have only an incomplete description of the drivers and/or possible management solutions, we will be unaware/uncertain about future returns from, and risks to, private and public investments in capital (i.e. social, natural, economic, cultural and political). This paper explores the unawareness/uncertainty problem by coupling Arrow's states of nature approach for dealing with uncertainty with Rothschild and Stiglitz's exploration of inputs and increasing risk. This results in a modified Just-Pope production function equation isolating inputs to i) protect base capital (natural, social or private) and/or ii) generate an output. By exploring water input supply unawareness via alternative states of nature we may identify tipping points where current technology fails, resulting in irreversible losses of private and public capital tied to water inputs. We conclude by discussing the value of quantifying minimum-input requirements and identifying critical tipping-point outcomes in water systems, increased benefits/risks from transformed landscapes chasing higher economic returns, and the need for adaptive public arrangements in response. These insights may help us to understand future risk to natural capital from rising incentives to steal increasingly constrained resources that may trigger revised risk-sharing arrangements, and some limits to analyses relying on perfect foresight requirements by decision-makers.