Birkhoff--James orthogonality to a subspace of operators defined between Banach spaces

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Mal, K. Paul
{"title":"Birkhoff--James orthogonality to a subspace of operators defined between Banach spaces","authors":"A. Mal, K. Paul","doi":"10.7900/jot.2019nov12.2262","DOIUrl":null,"url":null,"abstract":"This paper deals with the study of Birkhoff--James orthogonality of a linear operator to a subspace of operators defined between arbitrary Banach spaces. In case the domain space is reflexive and the subspace is finite dimensional we obtain a complete characterization. For arbitrary Banach spaces, we obtain the same under some additional conditions. For an arbitrary Hilbert space H, we also study orthogonality to a subspace of the space of linear operators L(H), both with respect to operator norm as well as numerical radius norm.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019nov12.2262","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

Abstract

This paper deals with the study of Birkhoff--James orthogonality of a linear operator to a subspace of operators defined between arbitrary Banach spaces. In case the domain space is reflexive and the subspace is finite dimensional we obtain a complete characterization. For arbitrary Banach spaces, we obtain the same under some additional conditions. For an arbitrary Hilbert space H, we also study orthogonality to a subspace of the space of linear operators L(H), both with respect to operator norm as well as numerical radius norm.
在Banach空间之间定义的算子子空间的Birkhoff—James正交性
本文研究了线性算子与任意Banach空间之间定义的算子子空间的Birkhoff—James正交性。在域空间是自反的并且子空间是有限维的情况下,我们得到了一个完整的刻画。对于任意Banach空间,我们在一些附加条件下得到了相同的结果。对于任意希尔伯特空间H,我们还研究了线性算子L(H)空间的子空间的正交性,包括算子范数和数值半径范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信