Mike Kamaliev, Jan Flesch, Joshua Grodotzki, A. Erman Tekkaya
{"title":"Numerical and experimental analysis of the isothermal high temperature pneumoforming process","authors":"Mike Kamaliev, Jan Flesch, Joshua Grodotzki, A. Erman Tekkaya","doi":"10.1007/s12289-023-01767-y","DOIUrl":null,"url":null,"abstract":"<div><p>The isothermal high temperature pneumoforming process to form tubes at constant elevated temperatures by means of internal pressure is investigated. Two materials, a ferritic (X2CrTiNb18) and a martensitic stainless steel (X12Cr13) are used for the investigations. The required material characterization is performed at the temperature and strain rate of the actual process. A new method for quantifying thermal softening via the time-dependent decrease in static yield stress is presented. At a temperature of 1000 °C, the static yield stress decreases by 50% within 100 s for both materials. The numerical models are validated on the basis of the formed geometry and used to study the influence of maximum internal pressure, axial feed, holding time under load and die edge length on the final part geometry. It was observed, that with higher internal pressures and longer holding times smaller corner radii are formed for both materials. In contrast, a superimposed axial feed as well as the effective friction coefficient have a negligible influence on the formed geometry. With an increasing die edge length, smaller radii are formed with the ferritic stainless steel numerically and experimentally. By contrast, for the martensitic stainless steel, larger radii are observed numerically. Experimentally, the limited formability of these tubes weld seam becomes apparent. Based on the findings, process windows depending on the process parameters internal pressure and die edge length were derived. Numerically, forming limit curves of tubular semi-finished products under comparable conditions serve as a failure criterion. Good agreement with experiments was observed.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01767-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01767-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The isothermal high temperature pneumoforming process to form tubes at constant elevated temperatures by means of internal pressure is investigated. Two materials, a ferritic (X2CrTiNb18) and a martensitic stainless steel (X12Cr13) are used for the investigations. The required material characterization is performed at the temperature and strain rate of the actual process. A new method for quantifying thermal softening via the time-dependent decrease in static yield stress is presented. At a temperature of 1000 °C, the static yield stress decreases by 50% within 100 s for both materials. The numerical models are validated on the basis of the formed geometry and used to study the influence of maximum internal pressure, axial feed, holding time under load and die edge length on the final part geometry. It was observed, that with higher internal pressures and longer holding times smaller corner radii are formed for both materials. In contrast, a superimposed axial feed as well as the effective friction coefficient have a negligible influence on the formed geometry. With an increasing die edge length, smaller radii are formed with the ferritic stainless steel numerically and experimentally. By contrast, for the martensitic stainless steel, larger radii are observed numerically. Experimentally, the limited formability of these tubes weld seam becomes apparent. Based on the findings, process windows depending on the process parameters internal pressure and die edge length were derived. Numerically, forming limit curves of tubular semi-finished products under comparable conditions serve as a failure criterion. Good agreement with experiments was observed.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.