{"title":"Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators","authors":"A. G. Georgiadis, G. Kyriazis","doi":"10.1515/agms-2020-0120","DOIUrl":null,"url":null,"abstract":"Abstract We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"8 1","pages":"418 - 429"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0120","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0120","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.