{"title":"Embeddings between Triebel-Lizorkin Spaces on Metric Spaces Associated with Operators","authors":"A. G. Georgiadis, G. Kyriazis","doi":"10.1515/agms-2020-0120","DOIUrl":null,"url":null,"abstract":"Abstract We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0120","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract We consider the general framework of a metric measure space satisfying the doubling volume property, associated with a non-negative self-adjoint operator, whose heat kernel enjoys standard Gaussian localization. We prove embedding theorems between Triebel-Lizorkin spaces associated with operators. Embeddings for non-classical Triebel-Lizorkin and (both classical and non-classical) Besov spaces are proved as well. Our result generalize the Euclidean case and are new for many settings of independent interest such as the ball, the interval and Riemannian manifolds.